Empir Software Eng @ CrossMark
https://doi.org/10.1007/310664-018-9599-4

An industrial case study on the use of UML in software
maintenance and its perceived benefits and hurdles

Ana M. Fernandez-Saez' @ - Michel R. V. Chaudron? -
Marcela Genero'!

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract UML is a commonly-used graphical language for the modelling of software. Works
regarding UML’s effectiveness have studied projects that develop software systems from
scratch. Yet the maintenance of software consumes a large share of the overall time and effort
required to develop software systems. This study, therefore, focuses on the use of UML in
software maintenance. We wish to elicit the practices of the software modelling used during
maintenance in industry and understand what are perceived as hurdles and benefits when using
modelling. In order to achieve a high level of realism, we performed a case study in a
multinational company’s ICT department. The analysis is based on 31 interviews with
employees who work on software maintenance projects. The interviewees played different
roles and provided complementary views about the use, hurdles and benefits of software
modelling and the use of UML. Our study uncovered a broad range of modelling-related
practices, which are presented in a theoretical framework that illustrates how these practices
are linked to the specific goals and context of software engineering projects. We present a list
of recommended practices that contribute to the increased effectiveness of software modelling.
The use of software modelling notations (like UML) is considered beneficial for software
maintenance, but needs to be tailored to its context. Various practices that contribute to the
effective use of modelling are commonly overlooked, suggesting that a more conscious

Communicated by: Tao Yue

P4 Ana M. Fernandez-Séaez
anamaria.fernandezsaez @ gmail.com

Michel R. V. Chaudron
chaudron @ chalmers.se

Marcela Genero
Marcela.Genero @uclm.es

ALARCOS Research Group, Instituto de Tecnologias y Sistemas de Informacion, University of
Castilla-La Mancha, Ciudad Real, Spain

Joint Computer Science and Engineering Department, Chalmers University of Technology &
University of Gothenburg, Gothenburg, Sweden

Published online: 16 March 2018 9\ Springer

http://orcid.org/0000-0001-5768-1650
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9599-4&domain=pdf
mailto:anamaria.fernandezsaez@gmail.com

Empir Software Eng

holistic approach with which to integrate modelling practices into the overall software
engineering approach is required.

Keywords UML - Software maintenance - Modelling languages - Industrial case study

1 Introduction

Modelling is a common practice in software engineering, and UML (OMG, 2011) is the de-
facto standard notation for this (Dobing and Parsons 2006; Scanniello et al. 2010). However,
in-depth evidence regarding the practice of using UML in industry is very scarce. Studies into
the effectiveness of UML have looked mostly at projects that develop software systems from
scratch. Yet the maintenance of software consumes a large share of the overall time and effort
required to develop software systems. Unlike developers, software maintainers, spend a lot of
their time understanding the system. This has led us to pay particular attention to the use of
UML diagrams by the maintainers of software systems, which consequently motivated this
study. We believe that industrial studies of this nature on software modelling could contribute
to an understanding of how modelling can be used effectively. Empirical studies are necessary
in real environments if we are to increase the depth of the knowledge and validity of the
application of Software Engineering practices (Runeson and Host 2009).

A considerable amount of software development effort concerns the maintenance of
software. Indeed, maintenance typically consumes between 40 and 80% of software project
costs (Pressman 2005). It is, therefore, important to understand the impact that software
modelling may have on software maintenance. We are convinced that the way in which
UML is used — i.e. which practices are used— is an important contextual factor that is
associated with the effectiveness of the use of UML. In order to understand the effectiveness
of UML, we have elicited factors related to the costs and benefits of using modelling during
software maintenance. In doing so, we add fresh findings to the hitherto scarce evidence
regarding the payoffs and costs of software modelling.

There is only scant empirical evidence related to our topic, the majority of which has been
obtained in academic contexts (Dzidek et al. 2008; Fernandez-Saez et al. 2014, 2015a, b).
However, it is important to investigate whether the results obtained in a controlled context are
valid in an industrial one. A case study explores a phenomenon within its real context,
especially when the boundaries between phenomenon and context are not evident (Yin
2002). The essence of the case study method is to conduct an empirical inquiry within its
real-life context and to thereby provide detailed, qualitatively rich, contextual description and
analysis of a complex real-life phenomenon. The relevance of the findings should be sought in
not only their novelty, but also in the confirmation of ‘known’ practices, as well as in the
contextualisation of the object of study. We therefore believe that the case study approach is
suitable for our study, because we wish to gather detailed information concerning an industrial
software maintenance project and to obtain reflections from practitioners as regards the failures
and success (especially in terms of costs and benefits) involved in the use of UML diagrams
(or in their absence). In this paper, then, we present empirical findings obtained in the ICT
(Information and Communication Technology) department of a large multinational company
by means of case study research.

The principal goal of our research is to discover what practices industrial software
professionals employ when using UML, and how they perceive the effectiveness of software

@ Springer

Empir Software Eng

modelling, paying particular attention to software maintenance tasks. As mentioned above, we
focus our attention particularly on UML as a specific modelling language because it is widely
used in industry (Dobing and Parsons 2006; Scanniello et al. 2010).

Since the term ‘maintenance’ is very broad, we would like to limit its scope from the
beginning of this paper. That being so, in this paper, “maintenance” always refers to adaptive,
perfective and corrective maintenance (Pigoski 2001), while preventive maintenance is out of
the scope of this study.

This paper is organised as follows. Section 2 presents the related work. Section 3
describes the case study and its design. The results obtained are set out in Section 4,
whilst some recommendations are provided in Section 5. In Section 7 a summary of all
the results, organised by research question, is presented, while the threats to validity are
discussed in Section 7. Finally, Section 8 outlines our main conclusions, and Section 9
presents future work.

2 Related Work

In order to find the relevant work related to this paper, we performed a Systematic Mapping
Study (SMS) to discover all the empirical studies related to the use of UML diagrams in
software maintenance, and to the understandability and modifiability of UML diagrams as
regards how they might influence system maintenance (Fernandez-Séez et al. 2013). The
findings obtained in this SMS are presented in the first block of related work. As the SMS was
performed a few years ago, we have attempted to update its results to discover more recent
evidence related to the topic discussed in this paper. In the second part of this section, we go on
to present experiments or academic evidence related to the use of UML. The last block of this
section is similar to the second, because it also complements the evidence found in the SMS,
but it contains industrial rather than academic evidence.

The SMS (Fernandez-Saez et al. 2013) enabled us to discover 46 papers reporting 74
empirical studies related to the topic of the use of UML diagrams in software maintenance. Of
these, only the following experiments were directly related to the maintenance of source code:

* Dzidek et al. (2008) performed a controlled experiment to investigate whether the use
of UML influences maintenance, as compared to the use of only source code. This
experiment investigates the costs of maintaining, along with the benefits of using,
UML documentation during the maintenance and evolution of a real nontrivial
system, with 20 professional developers as subjects. These maintainers had to
perform five maintenance tasks consisting of adding new functionalities to an
existing system, after which the correctness, time and quality of the solution were
measured. Both the source code and the UML diagrams, when available, had to be
maintained. The results of this work show a positive influence of the presence of
UML for maintainers. UML was always beneficial in terms of functional correctness
(with fewer faults being incorporated into the software) because the subjects in the
UML group showed, on average, a practically and statistically significant 54%
increase in the functional correctness of changes. UML also helped produce code
of better quality when the developers were not yet familiar with the system. This
experiment is a replication of previous work (Arisholm et al. 2006) performed with
students, which obtained similar results.

@ Springer

Empir Software Eng

* Arisholm et al. (Arisholm et al. 2006) presented the results of two controlled
experiments carried out to assess the impact of UML design diagrams on software
maintenance. 98 undergraduate students were involved. The authors analysed the
time taken to perform the modifications to the system, the time spent on maintaining
the models, and the quality of the modifications performed. The results of the
quantitative analysis revealed no significant difference as regards the time spent
making the modifications. Like (Dzidek et al. 2008), they observed that the quality
of the modifications was higher for those participants who were equipped with UML
diagrams. As in (Dzidek et al. 2008), the participants’ ability and experience were not
analysed with regard to the comprehensibility and modifiability of source code.
Unlike our study, the authors analysed the effect of UML-based documentation (a
use case diagram, sequence diagrams for each use case, and a class diagram) on
modification tasks performed on both UML diagrams and source code.

In order to extend the results obtained in the aforementioned SMS, we would like to
mention some other empirical studies, which were not part of the SMS, owing to their
particular contexts or dates. We shall first briefly describe other recent experiments performed
using undergraduate students, and which are related to UML and maintenance:

* A comparison of the attitude and performance of maintainers when using forward designed
(FD) diagrams vs. reverse engineered (RE) diagrams during the maintenance of source
code is discussed in (Fernandez-Saez et al. 2017b).

* The results show a tendency towards obtaining better results when using UML diagrams
(class diagrams specifically) that were hand-made during the design phase. This is because
the participants preferred FD diagrams when understanding and maintaining a system,
although their performance was not, in some cases, much better with FD diagrams. They
also noted that those participants who received RE diagrams had more difficulties when
reading the diagrams, especially the sequence diagrams.

* Focusing on the possible advantages of Model-Driven Development (MDD), improve-
ment to maintainability is studied in an experiment presented in (Ricca et al. 2012).
The results, which were obtained with Unimodal (a specific implementation of exe-
cutable UML), indicate a relevant shortening of time with no significant impact on
correctness, in comparison to conventional manual programming when performing
maintenance tasks.

* In (Scanniello et al. 2012) an experiment is presented, whose aim was to assess whether
the comprehension of source code is influenced by the presence or otherwise of UML class
and sequence diagrams produced in the design phase. The results reveal that the avail-
ability of UML allowed the subjects to perform the maintenance tasks better.

* The results of a family of 4 controlled experiments presented in (Scanniello et al.
2014) reveal that the use of analysis-level UML diagrams does not significantly
improve the comprehension and modifiability of source code with regard to the use
of source code alone.

* The experiment in (Fernandez-Séaez et al. 2014) studies whether different Levels of
Detail (LoD) in UML diagrams influence the maintenance of source code. The results
suggest that high LoD diagrams are more helpful when understanding a system in
comparison to low LoD, while low LoD diagrams are more helpful when carrying
out maintenance tasks.

@ Springer

Empir Software Eng

* Leotta et al. (2013) conducted a pilot experiment with 21 Bachelor’s degree students,
aiming to investigate the effect of documentation accuracy during software maintenance
and evolution activities. The result they obtained was a benefit of 15% in terms of
efficiency when more accurate documentation was used. Part of their experiment revealed
that UML documentation is considered to be more accurate.

The pattern that emerges from the results of these experiments, under controlled
conditions in academic environments, is that the use of UML diagrams is, to some extent,
beneficial for software maintenance. One important issue was to study whether these
results also hold in an industrial environment. The industrial evidence related to the topic
of this paper is the following:

e Scaniello et al. (2010) presented the results of an exploratory survey used to investigate the
state of practice regarding the use of UML in software development and maintenance. The
majority of the companies interviewed (75% out of 22 companies) used UML for software
development and maintenance. The interviewees were mainly practitioners with little
experience as regards performing maintenance operations. Another interesting point con-
cerns the average effort needed to perform maintenance operations, which ranges from 1 to
5 person hours for an ordinary maintenance operation (e.g., corrective changes), and from
10 to 50 person hours in the case of an extraordinary maintenance operation (e.g.,
perfective or adaptive changes). Scaniello’s study provides the responses of 22 Italian
companies, which means that the study cannot be generalised to other companies through-
out the world.

* Several related pieces of work investigate aspects of software modelling in general and/or
model-driven approaches (MDA). If we focus on those surveys directly related to the
influence of software modelling with software development, the work of Anda et al.
(2006) should be highlighted. The paper in question reported the anecdotal advantages
of modelling, such as improved traceability, but also pointed to potential negatives, such as
increased time taken to integrate legacy code with models, and organisational changes
needed to accommodate modelling.

* There is also a paper based on the study of Model Driven Engineering (MDE) from
an empirical point of view (Hutchinson et al. 2014). The authors first present the
results of a survey of MDE deployment, and provide some rough quantitative
measures of MDE practices in industry. They then go on to supplement these figures
with qualitative data obtained from some semi-structured, in-depth interviews with
MDE practitioners In particular, they supplement their figures by adding a descrip-
tion of the practices of four commercial organisations as they adopted a MDE
approach for their software development practices. In documenting some details of
their attempts to deploy model driven practices, the authors identify a number of
contextual factors, in particular the importance of complex organisational, manage-
rial, and social factors (as a complement to technical factors) that appear to influence
the relative success, or failure, of the endeavour. The interviewees describe genuine
success in their use of model driven development, but explain this as examples of
organisational change management. They conclude that the successful deployment of
MDE appears to require a progressive and iterative software development approach,
transparent organisational commitment and motivation, integration with existing
organisational processes, and a clear business focus.

@ Springer

Empir Software Eng

All the related work is summarised in Table 1, thus providing the reader with an overview
of the main information with which to compare the empirical studies. The columns in the table
have the following content:

* Ref: contains the reference to the paper that presents the empirical study considered.

* Type of empirical study: indicates the type of empirical study summarised in the paper (a
survey, an experiment, a family of experiments, etc.).

e Goal: describes the goal pursued by the empirical study.

* Subjects: presents the numbers of subjects who participated in the empirical studies, as
well as the type of subjects (students, professionals, academic staff, etc.).

* Independent variables: describes the variables that are studied, to ascertain their effect on
the dependent variables. The values (treatments) of the independent variables are also
presented.

* Dependent variables: presents the outcome variables, which are the variables that are
affected by the changes produced in the independent variables.

* Experiment design: contains the type of design selected, which can be between-subjects
(each subject receives only one treatment) or within subjects (each subject receives all the
treatments).

» Tasks: describes the tasks to be performed by the subjects as part of the empirical study.

* Results: reveals the main findings obtained.

3 Research Method

As mentioned above, we selected the case study as the research method that would be
applied, in order to obtain empirical evidence from a real environment. We believe the
case study approach is suitable for our study because we wish to gather detailed
information about industrial software maintenance projects and to obtain reflections
from practitioners on the failures and success in relation to the use of UML diagrams
(or their absence).

In this section, we discuss aspects of the research method employed in our study, following
the guidelines for case studies proposed by (Cruzes et al. 2011; Host and Runeson 2007,
Runeson et al. 2012; Runeson and Hdost 2009).

3.1 Goal and Research Questions

In the introduction, we affirmed that the principal goal of our research is to discover what
practices industrial software professionals use when using UML, as well as to find out how
they perceive the effectiveness of software modelling, paying particular attention to software
maintenance tasks.

The use of the Goal-Question-Metrics template (Basili and Weiss 1984) enabled us to
formulate the goal of this case study as follows: “Analyse the use of software modelling
for the purpose of investigating its use, effectiveness and hurdles, with regard to
software maintenance tasks, from the perspective of the researcher, in the context of
an industrial ICT department”.

@ Springer

Empir Software Eng

"9p09 901N0S JO AN[IRIIPOIA -
*9p09d 90INOS
Jo Aupiqe-puersiopup)-
“WRISAS oY) YYIM TRT[IIR)
194 10U 210M S10dO[OASP
Ay udym 2pod Ajenb 1o0q

sonpouxd padjay ospe NN
*SSUIOALIOD
[eUONOUNJ JO SULID)

ur [eroyjouaq skemje sem TN
‘porepdn
9q 0] SEM UONBIUSWNIOP
TINN 24 Jt swn

q1oul Y00} $193[qns TN YL
"WIOISAS OU) (LM JeI[IuIe)
19K 10U 210M S10dO[OASD
A udyMm pod Ajifenb 1op2q

donpoid padjay osfe TINN
*SSOUJOALIOD
[euonouny Jo SuLe)

ul [e10JoUdq skem[e sem TN
‘parepdn
9q 0] SEM UONBIUSWNIOP
TINN 24 Jt swn

d1oul)00} $192[qns TN YL

‘(swreerp paredurduo
9SI0AAI 10 USISIp
PIeMIOJ :SanfeA
o[qrssod) sweiderp
TINN Jo uiduo oy,

‘(9pod

2o1nos Surkuedwoo

-oe sureierp TN JOo

90udsqe 10 doussard

:sonfea o[qrssod)

dal pspoddns-TNN

€ Ul UONBIUAWNd0P
TN JO asn aY [,

*(9p0od 20IM0s
Surkuedwosoe
sweiSerp TN Jo
20udsqe 10 doussard
:sanfea a[qissod) AT
pauoddns-AN ©
Ul UOIBUAWNIOP
TN Jo 9sn ay[,

“(Afoanoadsax

‘8L pue 1§
‘0p) Syuopms
qrenpeIdIopun

“(Afoanoadsax

‘9L pue
Q) siuapnys
JpenpeIsSiopun

‘s1odojodp
Teuoissajoid (g

douanbas paroourSuo
—-PISIOAY 'S)NSAI
2A102[qns pue [eansne)s
uo paseq aseyd ugisop
oY) SuLmp spew-puey
QIoM YOIYM ‘streiSerp
SSe[o JuIsn udaym s}[nsal
10Y)2q UIe)qo 0) AJUpu]

"00UBULIUIRUI 9POD
90IN0S UO SweISeIp
TINN Jo wBLo ay) Jo

oudN[JUI BY) SUIWLIBIP O,

*0p0od 90IN0S AJUO JO
asn oy 0} uosLeduwod
Ul ‘doueUUIRW
saouan[yul TN JO Asn
Y oYIoYM eINSIAUL O,

*9p09 22In0S AJUO JO asn

Ay 0} uostreduwod

Ul Q0URUJUTRW

sooudN[yuI TN JO sh
Ay} IOyIoYM eSNSIAUL O],

‘suonsanb
EINIREIT 1IN

+ syse)
UOnESYIPOIA

(T+1)
sjuowiadxo
Jo Apure g

syuowodxd ¢

JuowLddxa |

‘usisop
paouefeq

spoalgns-ucomag

@Qs10z

®S10T T8 R
Z3pS-ZOpUpUId f)

(900

“Te 10 Wjoysuy)

(8002
Te 19 YoprzQ)

SHNSSY

“93ueyo
oy jo Apendy-
‘o8ueyd
1) JO SSAUIOALIO))-
‘swregerp
TINN + 9pod
‘swesgerp 9o1nos dgueyd
TINN W pue 0) POpadU AUl -
QP09 22IN0S *2p0d
ur syse) ‘ugisop 901n0s dueyo
UONBOYIPOJN 100[qNs-UamMIdg 0} Popadu o] -
‘uonnjos oy Jo
Anpenb pue
S$SAUJIALI0D
Jeuonoun,g-
‘swegerp
TN + 9pod
‘swesgerp 201nos dgueyd
TN Ul pue 0] Papadu dwi] -
9p0J 32INOS ‘9p0J 20IN0OS
ur syse) ‘ugisop o3ueyd 0}
uoneoyIpoly 109lqns-usomiog popadu o -
usIsop so[qeLeA
syse], JuowiLodxyg juopuada

SO[qELIBA
judpuadapuy

spoalqng

80D

Aprus
reounduwo
Jo od£y,

3

SHom paje[al Jo Arewung | J[qeL

pringer

Qs

Empir Software Eng

"SY[SB) QOUBULIUIBW JNO
SurAieo uoym [nydjoy 210w
Qe SWeISeIp (JOT MO[J[IyMm

‘o1 Mo 0} uostredwoo

ur woysAs e Surpueisiopun
udym [nydjay arowr

are swesderp qo1 Y3y jeyy

moys sonsne)s aAnduosop oy uorsudyardwo)

‘QIIqerIpow S)1 Iou 3podo
201mo0s Jo Aiqisuayarduiod
AU} JOYHIOU SoUSN[FUI $50001d

sisAJeue syuowonnbax

Ay ur paonpoid spepowr TN uorsudyarduwio))

103030} poppe aIe swieISerp
douanbos pue sse[o UM
10P9q Apuedyrusis opod

2o1nos puayarduwod syuedonred uorsuoyaiduwo)

‘(Sunweasord oyudd
9poo "o'1) Surwueroxd

‘suonsanb
2A1([qQns

+ syse)
uonedyIpout
+ syse)

‘suonsanb
aAnoalqns
pue syse)
uoneIIpOw
pue

‘suonsonb

‘9p0J INOS
Jo Apqegrpow
pue
‘spoalqns-usamiog Ajjiqepueisiopun

0poo
20In0s Ajipout
0) Jaurejurewt

e Jo Aiiqede)-
‘ugisop *9p09d 90IMOS
PadUR[EQINUNO)) oY) JO [A9]
syuedonaed unpipyy, - worsudyerduwo))-

*9p09 90IN0S
'spalgns-uryypy - Jo uorsuayardwo))

(@o1 mop

10 Y31y :sanjea o[qissod)
Swerserp TN

JO [Ie19p JO [9AS] oYL

‘(9pod
domos Surkueduwoooe
suwreIgerp
TINN JO 90uasqe
1o ooudsald :sonjea
d|qrssod) sjopow
sisA[eue TN JO 9sn YL
“(apoo
9omos Surkueduwoooe
sweigerp
TINN JO 9oudsqe
10 doudsaid :sanjea
J[qissod) aseyd
uSIsap Ay Ul pajeaId
swesgerp ssepo
pue 2ouanbas jo asn ay [,

‘(Kjoanoadsar
‘T pue 7€ 91
‘T1) syuapmys

“ddurUdUTBUL

QP09 901N0S Ul sweIserp

TINN Jo (QoT) [resdp
JO S[9AJ[JUSI_JIP JO

ojenpeISIopun odUSNFUI Y} SUIULIdIP O,

“(ApoAanoadsax

‘81 Pue 7T ‘TT

7T) Suepms
JpenpeIsiopun

‘Sjuopms
djenpersiopun 9|

*9poo
901n0s Jo Ajjiqerjipout
pue Apiqisuoyarduwiod

oy w sdjay ssadoxd
sIsAJeue syuowonnbax
o ur paonpoid
sjopour TN JO asn

A IoyIoYM eSNSIAUT O],

-oseyd

uSIsop o1eMJos o)
ur paonpoid suwreiderp
douonbas pue ssefo
TIAIN Wi papraoxd
are syuedroned uoym
SISBAIOUI PO A0INOS
Jo uorsudyaiduwiod

A IOYIOYM eSNSIAUT O],

€+D

spuowtodxa (F10T B 3
Jo Ay Zopg-Zopupuld])
(€+1

spuowiLiodxa W10z
Jo A, °[e 19 Of[oIUUEIS)

(T10t

Juowuiadxa | Te 19 ofjoIuuedS)

[BUONUSAUOD JO ‘syse} 'SY[SE) 9OUBU
peaIsul poJAIU[) JO dsh oy} "POINIUN) QoueULIUTELL -oJurew dIeMos uLnp
ySnoxy) paured ‘ssaujod1Iod ur pue uuojtod (pojNTu Sursn) judwu
uo joedwr Jueoyusis P02 20INOS 0} panmnbar swiy - ‘SJUAPMYS -do[oASD USALIP-[OPOIA
ou (IM ow) JO FurueHoys ur syse) ‘udisop *SSOUJOALIOD "BAB['SA d0130p JO SSOUQAOYIR
JUBAS[QI B Q)eIIPUl S}NSOY QOUBUAUIB[POdUR[RGIIUNOD) JOBJOMY - POJAIU[) JO SSOUQANIIYH s Jo[oyoed 7 A dJen[eAd 0, Juowddxa | (Z107 Te 10 8IINY)
"peal 0 JNOYIP PaId
-pISUO0d 210M sweISerp
Apms
ugisop S9[qeLeA So[qeLeA [eoundud
S)nsoy syse], Juowedxg yuopuadog Juopuadapuy syoalqng [eon Jo adA1, REN|

(ponunuod) | Jqe],

pringer

N

Empir Software Eng

'S10)
-0B] [B100S PuE [eLIDRUBW
‘[euoneziuesio xo[duwod
Jo oouepoduwr oy ‘epnonred
Ul :pOIUSPT 2IoM
510108} [O1UY0d) dduurs
0} pasoddo se ‘sayorordde
AaN Swkdde jo
QIN[TEJ/SSIIINS AT} OUIN[FUT
0} 1eadde jey s10)oej dwog
“UONBIUSWNOOP pUE.
UONEOIUNWLIOD 0} OS[E pu.
‘s95B0 159} JO Juddo[ardp
Ppue ‘0poo 2y Jo uSIsap
9poo 01 syuawaxnbar woxy
Aiqeasen o) syuaudAoxdur
OpeW SOIMAIAINUT A,
‘suonelodo dourUUTEW
Aqurewr unograd doustodxo
SMI] YA s1dUONNORI]
*0UBULIUTRW
pue Juawdo[oAdp aIemyos
10J TN 9SN POMIIAINUL
soruedwod 2y Jo Auofew oy

“(0youdq 9¢1) SYsey
doueudurewr Suump sdjoy
uonBIUAWNOOP pousife

Ue 1By} PAWLIJUOD S)NSAI Y],

“HAIA Jo doudLadxo
[ermnsnput o
pueISIdpUN PUB dQLISIP O],

'spoofoxd
oZrey oyur Judwdojoadp
paseq-TIAN Suronponur
‘s1o3euewr UM ‘Sasned
j00fo1d pue T19Y) pue SoN[NOYJIp
s1odojoAap s Suofe ‘sjyouaq
- - woIsAs 9 Qerpawil AJuopl o,

“Ansnput uerjef
Ul Q0UBUIUIRW pUB
Juowdo[oAsp aremijos
Ul TN JO 9sn oy
Surpegar sonoerd oy
— — — JO 9Je)s oy e3NSAAUI O],

SmatAIRUL 10T
+ AoAIns [°[e 30 UOSUIYOINE])

Apms osed [(900€ & 10 EpuY)

(o102
AoaIns | ‘[e 39 O[[aIuuedS)

(€10T Te 1 eNoaT)

s)nsay

*(UOTEIUSWNOOP
pausie
orout, /SS9, ‘SuopNIS ‘Syse} Q0uBU
:sonJeA J[qISSO) Ip0d Qa130p -oJuIeW UO UOHEIUAWN
90IN0S pue weigerp s Jo[oyoeg -00p TN pausie-uou
Kouororyyg SSe[d Jo judwudife ay [, IedA paryy 17 Jo yoedur o 9eSnsoAur 0,
S9[qeLIBA S9[qeLIBA
juspuadaq juspuadapuy s102[qng oD

Apms
Teotnduwo
Jo adAL, Jod

(ponunuoo) | Aqer,

pringer

Qs

Empir Software Eng

This goal was used to formulate our main research questions (RQs):
RQ1) What practices are involved in using UML in software maintenance projects?

This research question was directly derived from the GQM statement. We wanted to
understand the impact of UML, and suspected that different people used UML in different
ways. Through this question, we wanted to elicit the variety of practices, because different
practices are likely to have different kinds of impact on effectiveness of use of UML.

RQ2) What are the costs-factors and benefit-factors of using UML in software mainte-
nance projects?

This research question arose from RQ1, because costs and benefits are drivers that shape
the practices of using UML. This RQ thus needs to be answered in an effort to help find a
response for RQI.

Although the main objective of this study is to attempt to answer the RQs stated above, two
additional RQs were also considered when designing and analysing this case study. The
following RQs were added, so as to provide a comparison between UML documentation,
and documentation that does not contain diagrams (UML diagrams in particular, and other
modelling notations in general):

RQ3) What are the factual and perceived hurdles when maintaining documentation, and
UML models as part of that documentation?

Apart from providing a comparison of documentation containing models vs. documentation
which does not cointain any kind of models, this RQ separates the subjective point of view
concerning the obstacles to the correct maintenance of the documentation of a project found by
maintainers from the factual, objective perspective.

RQ4) What are best practices when using diagramming and modelling in documentation?

After eliciting and reflecting on the costs and benefits, as well as the hurdles
experienced by maintainers, we try to distil what can be considered the best practices,
and go on to provide some recommendations about (UML) modelling documentation,
and SE practices in general.

3.2 Case and Subject Selection

For our case study, we collected data at the ICT Department of a multinational transport
company in Western Europe. This company is about 100 years old, but we could trace
the use of ICT in the company back to (at least) the late 1960°’s. The ICT department has
between 800 and 1000 employees, all of whom are involved in ICT functions. ICT plays
an essential role in this company’s competitive advantage within its sector. Moreover,
the company has to comply with many ICT standards in the sector. An internal depart-
ment produces the company’s software in-house, and its innovation as regards ICT is a
valuable asset. The organisational unit of interest for this research is located within the
Information Services development department, which is part of the ICT department. The

@ Springer

Empir Software Eng

Information Services development department is where all the software development
takes place.
The types of software systems that are being maintained at the company are the following:

* Mainframe systems: these started in the late 60’s, signifying that low level programming
languages are used. Programmers involved in the maintenance of this kind of systems are
hired after completing their school studies, and trained in-house. This training is based on
high-ceremony and documentation-intensive development processes.

* Information systems: this kind of systems includes several hundreds of applications,
several of which are considered to be legacy systems. They usually contain a fair number
of interfaces to external systems. Employees with heterogeneous backgrounds perform the
maintenance of this kind of systems.

* Mobile systems: these systems typically use web and agile technologies. Younger devel-
opers who have had some form of UML training as part of their formal education are
usually involved in the maintenance of this kind of systems.

The ICT employees work in different divisions. These divisions are organised by domain-
area. Another organisational split is in business technology. People in the technology domain
are grouped in technology-areas: mainframe, mobile and web, Java, SAP, etc. The ICT
organisation can therefore be considered as a matrix structure (Table 2). The functions that
people have in a team may additionally be specialised in a particular activity of the software
development process: architect, developer, tester, tool-smith, business-analyst, information-
analyst, project manager, etc.

In this organisation, all software is developed through projects, which have a limited
duration in time. When a new system is provided, the Company call that project a
“development project”, while an existing system that is modified or adapted is called a
“maintenance project” (that is, large maintenance changes are made in the form of new
development projects). The creation and update of documentation is part of the responsibility
of the projects themselves. Software maintenance is carried out by a specialised and dedicated
team in the organisation. Most of the projects in this ICT department are in fact mainly
software maintenance in type. We shall therefore provide a detailed definition of maintenance
(which is also the explanation we gave to all the participants in the case study):

By “software maintenance” we refer firstly to small changes made in a system that is
running, and changes that are intended to remove errors or bugs from the software, the
procedures, the hardware, the network, the data structures, and the documentation”, i.e.
corrective maintenance (Swanson 1976). We also refer to major system changes like
maintenance activities intended to enhance the system by adding features, capabilities,
and functions, in response to new technology, upgrades, new requirements, or new
problems, i.e. a modification of a software product performed after delivery to keep a

Table 2 Matrix structure of the ICT organization

Division 1 Division 2 Division 3
Domain 1 Java C# NET Java SAP C#
Domain 2 COBOL/Mainframe COBOL/Mainframe COBOL/Mainframe
Domain 3 Mobile development Mobile /WEB development WEB development

@ Springer

Empir Software Eng

software product usable in a changed or changing environment (ISO/IEC 1999). This
might be regarded as adaptive and perfective maintenance. In this study, preventive
maintenance is not taken into account.

There is a company-wide standard for software development. This standard prescribes the
development process and deliverables, milestones, approval procedures, and quality assurance
(which includes naming conventions for source code). This standard has grown out of an
iterative development style. The company is also adopting agile development for some of its
smaller projects, and would like to scale this up to larger projects. The standard does not dictate
the use of UML or modelling in general. Enterprise-wide integration across systems is based
on the service orientation (SOA) paradigm.

The tools available for modelling at the company are: Visio, Bizz Design Architect and
Sparx Enterprise Architect. The tools for source code management commonly used in the
software development/maintenance projects in this company are:

* JIRA: this is an issue tracking system used for bug tracking and issue tracking.
* Subversion: this is used for version management of source code.
* Tools for code coverage and code quality are also in place.

We would also like to summarise the types of documents that are commonly used in a
typical maintenance project at this company. In addition, we have related each specific
responsibility role to a document. This information is summarised in Fig. 1.

Our study is a single embedded case study (Fig. 2) and follows the classification by Yin
(2002). Our unit of analysis is the “approach to modelling”. For this purpose we studied
various projects within one large IT-development department (cases). In studying our cases, we
quickly found out that to understand the approach to modelling, we also needed to understand
the context of these projects. In particular, we had to comprehend the goals of the various
stakeholders in the software development organization. Within these cases, then, we looked at

Project manager

Progress
Plan report

Go-live
report

Project
Initiation
Document

Final
report

Financial

report S

Service
‘manual
document

Environmental
test report

Test
classes
+

Test
strategy

| ! ! H i ! i il Deployed

j ' : 1 ; ! ; “| arp

: i| Functional T ! . i . .

! 1| document \ ! 1 ! !

3 ' \ Instructions |1 Technical |1 Ef"c“:dg: ! | |

' ! = for 1 design : ' :

1 1| development |1 ! N : !
i 1 ' | Change of |
! ' [v Globar] i | documentation | |
i ! | Design | i !

Use |! i : : Design i

sy |* : : ; story :

Business | Analyst i Information | Architect i Technical | Developer
stakeholder ! U amalyst | : lead

Automated/ |1

manual
tests

Testlead | Tester | Deployer

Fig. 1 Flow of documentation in the company and responsibility roles

@ Springer

Empir Software Eng

Context = ICT-department of a multinational company

! : Unit of analysis 1 = : Unit of analysis 1 = 0l
1 : Approach to modelling 1 Approach to modelling 2

Fig. 2 The type of case study based on Yin’s definition (Yin 2002)

modelling goals, processes, practices and tools (as the main aspects of the ‘approach to
modelling’) from the perspectives of different stakeholders in those projects.

We chose this company because one of the authors of this paper had arranged placements
for MSc. students at that organisation, which meant that there was a collaboration relationship.
The company is considered to be a fair representative of large multinational companies, having
a large ICT department, a heterogeneous IT-landscape, and a long record of accomplishment in
software development.

3.3 Data Collection Procedures

The source used to obtain data regarding the use of UML during maintenance tasks was
interviews with Company personnel. In order to avoid trouble related to ethical issues,
there was no information in the raw data that could allow a particular individual to be
identified. A note was made of the names of the interviewees who participated in the
case study, so as to be able to contact them when the interviews were transcribed and
obtain written confirmation of their agreement to the interviews being used, but it was
not possible to link their names to their responses. We used semi-structured interviews in
which the interviews are “guided conversations” (McNamara 1999). The interviews were
standardised, in the sense that each interviewee was asked similar questions, but they
were also open-ended, in that there was ample room for the interviewees to elaborate. We
must also take into account that no choices were provided to interviewees for each
question. This means that all the results of this case study are spontaneous responses on
the part of the interviewees. The interview questions are shown in Appendix 1.

The 33 questions (21 main questions, some of them with subquestions) were selected using
a refinement and adaptation of questions from previous empirical studies as our basis. We
started with the questionnaire of a previous survey done by the authors of the paper
(Fernandez-Séez et al. 2015a). We then complemented the list of questions using as inspiration
other empirical studies related to software maintenance (de Souza et al. 2005; Yamashita and
Moonen 2012). Apart from those sources, studies from different contexts, such as Embedded
Software Engineering or MDE, were taken into account, but these were (partially) focused on
UML (Hutchinson et al. 2014; Mellegard and Staron 2010; Torchiano et al. 2013).

3.4 Case Study Execution and Analysis Procedure

The first author spent 12 months as a temporary member of the organisation in the capacity of
research intern. She had direct access to the company staff, and in particular to the people
involved with the maintenance projects. We first collected the data by performing 37 inter-

views of about 1 h each. This evidence was gathered over the period 2012-2014. Six of the

@ Springer

Empir Software Eng

interviews were discarded because the employees were not related to software maintenance
issues. In the end, 31 interviews were completely analysed, and are reported in this paper.

We started with a list of questions, because we were very interested in learning about
those topics. At the same time, the interviews were done in an open form: certain questions
were asked to some interviewees, and different ones were given to others. In addition,
some of the questions were focussed more on one particular issue (e.g. about UML) and
others were about more general topics, such as documentation in general. It should also be
said that a number of insights were found that are not related to UML (the main factor
under study in this case). These insights came to light during the interviews, and we
allowed the interviewees to continue talking about these topics - in the spirit of grounded
theory. During the research period, interviews that had already been done were also coded,
in order to guide the subsequent interviews. The list of questions was used especially as
support in starting a new conversation when a deadlock was reached in the existing
conversation. That happened because sometimes interviewees were “shy” and did not talk
too much (especially about those topics in which they did not consider themselves
experts). We would like to stress that all the questions were open-questions. This meant
that no choices were presented to the interviewees; the findings presented in Section 4 are
a result of a process of:

* coding the interviewees’ spontaneous responses,
* grouping the codes obtained,
* analysing the groups obtained.

The interviews were performed with people playing different roles, so as to obtain different
points of view. The interviewee roles include: project manager, information analyst, project
architect, technical lead, programmer or application developer, test engineer, delivery lead,
SCRUM master, and systems analyst.

In order to extract findings from our study, we used the grounded theory approach, which is
built upon two key concepts: constant comparison, in which data are collected and analysed
simultaneously, and theoretical sampling, in which decisions about which data should be
collected next are determined by the theory that is being constructed (Glaser and Strauss 1967).
The distinctive feature of a grounded theory approach is its commitment to research and
“discovery” through direct contact with the social world of interest, coupled with a rejection of
a priori theorising (Locke 2001).

The essential idea in discovering a grounded theory is to find a core category, at a high level
of abstraction but grounded in the data, which accounts for what is central in the data (Punch
2005). This is done in the following three stages (Robson 2011):

* Finding conceptual categories in the data (coding).
* Finding relationships between these categories.
* Conceptualising and accounting for these relationships by finding a core category.

The analyst begins the conceptualisation with open coding, which is “the part of analysis
that pertains specifically to the naming and categorising of phenomena through the close
examination of data” (Strauss and Corbin 1990). This is accomplished largely by asking
questions about data and making comparisons, aiming to find similarities and differences
between each incident, event, and other instances of phenomena (Strauss and Corbin 1990).

@ Springer

Empir Software Eng

Following this approach, and using the qualitative data, i.e. the data obtained from the

interviews, we analysed the data in the following steps (Fig. 3):

D
2)

3)

4)

We performed the interviews, and the conversations were recorded using a voice recorder.
Each interview was transcribed. We used the Digital Voice Editor tool (Sony 2010) and a
text processor (Word) in order to perform this process. The transcriptions of the interviews
were shown to the respective interviewees, and they either accepted them, or clarified
what they had intended to say.

We analysed each transcription, highlighting the important and surprising statements. This
was done through the simultaneous use of NVivo 10 (Richards 1999) and Word by means
of open thematic coding. This coding was carried out independently by two researchers,
and then discussed.

We then coded the statements and grouped them under more general categories or factors
(Seaman 1999). We also used NVivo 10 and Word to perform this step.

The transcribed interviews led to a set of text files of 146,821words in total. The quanti-

tative data was derived from the background questions that we asked the interviewees.

Finally, we summarised all the results of this case study, generating a theory. In

mature sciences, building theories is the principal method of acquiring and accumulating
knowledge. But there is little use and development of empirically-based theories in
Software Engineering (Sjoberg et al. 2008). Theory is the means by which one may

TEAM MEMBERS validation
T

Codify Identify
/\ statements factors
=]
> | _I | “factor 1
Intv. 1 |—)| transcr. 1 |:}>
Intv. 2 I—)l transcr. 2 |—:)>> fa ctor 2
I factor 3
Inwv. 3 |—>| transcr. 3 |Z
> factor 4

Project
B

[] >
Intv. 4 H transcr. 4 |;>

PY factor 5
>
‘L,l Inwv.5 |—)| transcr. 5 |:>> __I
/ factor 6
\I Intv.n |—)| transcr. n |:>>
4

Interview Transcribe | |

team members audiorecordings
STATEMENTS

factor n

Fig. 3 Case study execution and analysis procedure

@ Springer

Empir Software Eng

generalize analytically (Cook et al. 2001), thus enabling generalization from situations,
such as case studies, in which statistical generalization is not desirable or possible (Yin
2002). In case-based research, we may attempt generalization from the object of study to
the theoretical population immediately. For example, from the investigation of a single
project, we may tentatively hypothesize a generalization about all similar software
engineering projects in similar companies. Another aspect of case-based research is that
variability is reduced by the breaking down of a single case into components with
interactions, such as for example people and roles in a project. These components and
mechanisms may be recurrent across a large set of different cases, and are hence
interesting subjects of generalization. It is important to note that since a conceptual
framework is a set of definitions, it cannot be true or false, but it can be applicable or not
(Wieringa and Daneva 2015).

We decided to generate a theory as the final result of the grounded-theory process,
motivated especially by the comment of Johnson et al.: “many proposed [...] methods,
programming languages and requirements specification languages exist, but very few explicit
theories explain why or predict that one method or language would be preferable to another
under given conditions” (Johnson et al. 2012). It is not worthwhile to develop a general theory
of software engineering, but it is very useful to develop incompletely specified, partial theories
that can be applied to practice (Wieringa and Daneva 2015).

4 Results

This section presents the results of our case study. The main results of this empirical study
are qualitative data, although in some cases we have provided a few statistics when these
help to reinforce the importance (by repetition) of a specific finding. In order to present all
of them in the best way, organizing them and linking them when possible, we have
produced a theory inspired by the elements highlighted in (Sjeberg et al. 2008), along
with the authors’(previous and current) observations of industry practice. Our theory is
formulated on the basis of conclusions drawn and extracted from observations in industry,
the objective being to capture all the observations of this particular case study and help
explain them.

The diagrams of our theory contain the constructs (what the basic elements are), and
propositions (how the constructs interact). The explanations (why the propositions are as
specified) of the theory are detailed in the text accompanying the diagrams. Note that the
scope (what the universe of discourse is in which the theory is applicable) of the theory
is the same as the context of the case study. We used the nomenclature suggested in
(Sjeberg et al. 2008).

The theory is presented by means of multiple diagrams that focus on different areas
of the theory. Figure 4 presents the “baseline” theory. On it we represent the environ-
ment in which the results of the case study will be embedded. On the left side, we can
observe elements related to a typical SE approach. We selected only the main elements
that we found in our case study, but there are definitely other elements which might be
good candidates for being represented also there. On the right side we represent the
approaches of interest in this case study: the approach to modelling (and especially the
approach to UML modelling), and also the approach to documentation (for example
when modelling is not available).

@ Springer

Empir Software Eng

SE APPROACH RGO APPROACH TO

DOCUMENTATION IMPLEMENTATION
APPROACH TO (UML) MODELLING

GOAL

STAKEHOLDER h » GOAL
*
STAGE drives dri
+

has

‘ *

T
'

2
>
&

has
PROCESS

PROCESS

PROJECT —hasP CONTEXT (—drivesJ»|)
influences
drives

iF

a
3
@
1

SE-PRACTICES SE-PRACTICES

L
0

dri
*

K

drives s

*

SE-TOOLS SETOOLS

Fig. 4 “Baseline” theory

The main statements represented in this theory are the following:

* Projects take place in a context, have stakeholders and can be in a particular stage of
a lifecycle.

» Stakeholders have goals, and these may change throughout the execution stages of a
project.

* The stakeholders’ goals drive the SE process used and the practices used in the overall
approach to SE.

* A process denotes the collection of (formalised) steps of tasks that the project follows to
engineer software.

* The processes and practices in turn drive the choice and use of tools.

* Part of the overall approach to SE is the approach to documentation (AtD) and the
approach to implementation (Atl). AtD and Atl refer to a combination of goals, processes,
practices and tools for documentation and implementation, respectively.

» Together, the AtD and AdI drive the approach to modelling (AtM). The approach to
modelling itself again consists of a goal-modelling process, a set of modelling practices
and a collection of modelling tools. The modelling approach (which is based on UML or
another notation) represents a “bridge” between the AtD and the Atl.

We would like to point out that the boxes containing others do not necessarily mean an
inheritance relationship; a “part of” relationship is more appropriate in this case. The legend
for all the diagrams that present our theory is summarised in Fig. 5.

We present the results of the case study, grouped by each element of the SE approach
represented in Fig. 4, and we also made an effort to relate them to each RQ. As mentioned
above, all the results in the following subsections were extracted using the grounded theory
methodology.

Furthermore, the results of this case study are complemented with quotes from the
interviews that were considered noteworthy as regards the topic being analysed. Those quotes

@ Springer

Empir Software Eng

= Constructs from the baseline theory

/) = Constructs extracted from the case study

.

= Constructs extracted from the case study
from hurdle-type

_ = Propositions from the baseline theory
_ > = Propositions extracted from the case study
, = Propositions extracted from the case study

from “not-guaranteed” relation

Fig. 5 Legend of the theory-diagrams

are labelled using the term “Int”, followed by the number of the interviewee (for example,
[Int12] would be used to label a quote from interviewee number 12). A summary of the main
background information related to each interviewee is presented in Appendix 2. We ask the
reader to take into account that a few of the interviewees did not want to provide some of their
personal details (educational level or field of education). Although it was emphasised to them
that the interviewees were going to have their identity kept secret, these individuals thought
that their responses might make it possible to link to them to those more personal data, so they
preferred not to provide the personal details mentioned. It is also important to point out that
since not all the interviewees responded to all the questions, the percentages shown in this
paper were calculated in two ways:

* Relative to the total number of interviewees.
* Relative to the number of interviewees that mention this term/category.

The means used to calculate the numbers is stipulated in each section.
4.1 Background

We asked the interviewees to fill in a short questionnaire about their background in order to
characterise them, but not all of them wished to give this information.

With regard to the interviewees’ gender, 10% of them are female and 90% are male. This
proportion was expected, based on our personal perception of the proportions of ICT em-
ployees at the company.

The interviewees’ educational level would appear to be mostly (11) Bachelor Students, e.g.
polytechnic level, and Master’s Students, at universities (4). The fields of education they come
from are mainly from Computer Science degrees, although there are other fields, such as Arts,
Business and Finance, Chemistry and Physics, Electronics, Maths, Psychology and the Navy.

We also asked our interviewees about their experience in ICT. We classified them into the
following categories:

* Low experience: those who have been working in ICT for less than 1 year (2
interviewees).

@ Springer

Empir Software Eng

* Medium experience: those who have been working in ICT for between one and 5 years (2

interviewees).

* High experience: those who have been working in ICT for between 5 years to 10 (4
interviewees).

* Very high experience: those who have been working in ICT for more than 10 years (19
interviewees).

The majority of the interviewees are very highly-experienced people.

The roles of the interviewees were varied: analyst developer (1), delivery lead (1) deployer
(1), information analyst (3), program analyst (1), programmer / application developer (9),
project architect (5), project manager (2), SCRUM master (1), system analyst (2), team leader
(1), technical lead (2), test coordinator (1), and test engineer (1).

Half of our interviewees (16) responded to the question about the projects on which they
were working at the time of the interviews (the others preferred not to say, as they were
concerned about privacy). The types of projects were varied:

* Common projects, concerning desktop or web applications (31%)
* Mobile application projects (25%)

* Projects regarding the maintenance of old legacy systems (13%)
* Outsourced/offshored projects (13%)

* Projects concerning mainframe systems (6%)

* Projects regarding migration (6%)

* Projects related to embedded real-time programming (6%)

4.2 Goal

In this subsection, we present the results of our case study that are related to the element
“GOAL”. Firstly, we focus on the different goals or purposes of using UML, all of them
mentioned by the interviewees. This subsection contributes to answering RQ1. We also present
a subsection about “costs,” which is a specific goal (to reduce the project costs), and common
to the majority of maintenance projects. That subsection contributes to answering RQ2.

4.2.1 Purpose of Use of UML

One of the questions during the interview was: “Why do you use UML diagrams? / For what
purpose is UML modelling used?” The answers to these questions varied, and are shown in
Fig. 6. When reading the figure, please bear in mind that one interviewee might have
mentioned more than one purpose, so it is important to note that the percentages represent
the ratio of interviewees who spontaneously mentioned a purpose (they do not add up to 100).

The majority of the interviewees use UML as a communication tool (63%), in line with
other empirical studies (Petre 2013). This communication can be:

* Between team members (38%).

* With members of other teams (9%). This is especially important when part of a team is geo-
distributed, or when part of the maintenance is outsourced. In these cases, the use of prototypes
would also be very helpful as regards properly communicating what should be done.

@ Springer

Empir Software Eng

Purposes of use of UML

70%
60%
50%
40%
30%
20%
10%

0%

B % of Interviewees

Fig. 6 Responses regarding the main reasons for the use of UML

* With stakeholders (6%). This type of communication is usually difficult, and UML helps
to establish a standardised means of explaining the size and the complexity of the project
to stakeholders.

* UML is also used to communicate the current situation to newcomers to the project (16%).
This is very important in the quest to avoid “knowledge evaporation”. That situation
occurs when an expert on a system leaves a project, taking with him/her some knowledge
that is not documented.

The wide use of UML as a representation for communication might be thanks to the fact
that it is a standard notation, and because it is well known both by professionals and recent
graduates. People also recognise that UML diagrams are used to complement verbal commu-
nication (face-to-face or written), but not to replace it: “UML helps to improve the communi-
cation, but it doesn’t replace it” [Int4].

The next most common use of UML diagrams is to obtain an overview of the system being
maintained, or to summarise it (41%): “UML is mostly a high level picture or presentation of
what the landscape looks like; so, by that I mean, this is a product which is placed in this
domain; it uses these services, these data models, and they interact with each other in this
way” [Int6].

The next most common use of UML is to help to create a proper design (22%): “UML is a
sort of a tool you can use while thinking about and creating things; going over them again,
you'll find mistakes in the next step, you can adjust new elements, new classes and...so it’s also
a sort of brainstorming that in that way supports, really supports, the specification process”
[Int35]. With regard to sequence diagrams, they are used to help plan for a solution, but the
diagrams are not created for documentation purposes: “We have ofien seen that developers
start coding without really thinking through the programme that they have. [..] However,
having a sequence diagram in place will help them to think through the problem before they
solve it. [..] Sometimes, depending on the need, it may be kept or discarded, because when you
cannot maintain it you discard it, but the purpose is actually fulfilled” [Int24].

Another purpose of using UML which is often reported as much as the previous one (22%), is
to enhance people’s own understanding of the system being maintained. A modelling notation is
also a tool which can help maintainers to create their own mental representations of the system
being maintained, as well as of the task that needs to be carried out: “When you pick up
something new, big, and challenging, then you start writing your thoughts on the whiteboard,

@ Springer

Empir Software Eng

and at some point on the whiteboard, the clouds converge to show something that is structured.
So you make a diagram of it. You think it out. Then you can you back to the whiteboard and do
the next level of understanding. And that is what is great about UML. [...] You can use the
diagram easily to explain what you have in mind. That is what I usually do” [Int4].

When comparing these findings to related work, a question arose: how closely do these
internal structures correspond to external representations, whether these are in relation to
program code or to visualisation tools? This question was studied by Petre’s work (Petre
and Blackwell 1999), but her study is more oriented to the designing of program codes, rather
than to architectural design. In our interviews we find that UML is used both by architects and
programmers. Petre reports that software engineers use 2D, multidimensional and multi-model
mental representations.

The next most cited reason for using UML was to guide testing and to plan the rest of the
project, creating a to-do list (13%). As an illustration, we quote: “Sometimes I put in things just
to remember that these are aspects that arve also there, or [...] I put in the components that do
not exist or seldom exist, just to remember <I have to do something with this>[...], then at
least we don't forget to address that aspect at the very beginning” [Int3]. Some project
managers also use UML diagrams to keep track of progress [Int37].

Uses that were mentioned, but only rarely (3%; i.e. by only one person for each
use), include: guiding implementation, analysing risks, documenting, following the
mandatory process, justifying costs, supporting maintenance, determining responsibil-
ities for success (offshore team), monitoring implementation, having a professional
way of developing, checking the quality of the implementation, or showing progress.
This list of rarely mentioned purposes of the use of modelling is aligned with the
results of the survey by Liebel et al. (Liebel et al. 2018). The study in question focused
on embedded software systems and discovered that the main purposes of using models
in that domain are: simulation, code generation, and documentation. This makes sense
because the automation of activities in the embedded domain during the development
process would appear to be of great importance.

We should also comment that some possible purposes which we expected were not
mentioned by any of the interviewees; these included purposes such as certification, deploy-
ment, generation of implementation, knowledge transfer or reasoning about design.

The responses to this question show that — when available - UML models serve a variety of
purposes. The main purposes are rather ‘soft/fuzzy’ and are related to communicating,
understanding and creating a design. Figure 7 shows the main purposes of the use of UML,
along with the elements that influence it. In this figure, and in the other figures concerning the
theory, the dashed lines represent evidence-based relationships. These relationships are repre-
sented using arrows, which link an element A with an element B. For example, the
“influences” arrows mean that a decision in A has an impact on decisions in B. The “like”
arrows mean that B is an example of A. The remaining names given to the arrows could be
considered as self-explanatory (for example, “increases”, “leads to”, etc.).

4.2.2 Perceived Cost Factors of Modelling

We asked the interviewees about the possible cost factors or investments related to the
use of a modelling notation like UML in software maintenance: “What cost factors are
related to the use of UML modelling in your work?”. Table 3 shows the responses to
this question, and their ratios; these were spontaneous responses, i.e. the costs

@ Springer

Empir Software Eng

SE APPROACH APPROACH TO UML MODELLING S~
— -} Communication

N
|_ & 1 . I— > Get overview)
influences like ~ -

STAKEHOLDER has—» GOAL ’— ——— — MODELLING PURPOSE — —_—
|— ’P/ Specification \

drives

|— -}’\ Own understanding /\
. g >

e g T
PROCESS I— —V\;Guwdelmplementanon)
|' > Guide testing

drives
*

SE-PRACTICES ’—

| |_ T e)
arves ~>(__Doumertig)
*

[—
—V\W Checking)

R

|' —P/ Standarization)

SE-TOOLS

Fig. 7 Theory summarizing the purposes of the use of UML

mentioned in this section were not suggested to the interviewees at any moment. The
majority of the interviewees considered that training is an important investment.

The types of training costs mentioned could be split into two main groups. One significant
factor that emerged was the cost of training in the UML notation. So we can say that in some
sense the educational background may influence the discussion on the training cost of using
models. This might be due to a fear of their own poor understanding of UML: “They assume
they understand the entire diagram, but the fact is that they completely misunderstand the
diagram. So it depends on how you do the communication” [Int3]. During the interviews we
detected that the term UML is sometimes considered to be a synonym of Rational Unified
Process (Jacobson et al. 1999) or even Object Orientation (OO) (Blaha and Rumbaugh 2004;
Bruegge and Dutoit 2010). Some of the interviewees thought that the use of a standard
notation is not sufficient, and that training is necessary to establish alignments and conven-
tions. It is also noteworthy that several engineers (especially those that have not passed through
education in Computer Science or Software Engineering from a university), stated that they
learn by doing, and that they train on the job. However, if they learn by looking at existing
documentation, they will learn ‘box-and-line’ diagramming, with very little knowledge of the
variety of syntactical elements, or of their official meaning.

Table 3 Cost factors related to the

use of UML Cost factor % of interviewees
Training 48%
in UML notation 32%
in modelling tool 16%
Tooling 32%
Migration of documentation 10%
Change of people’s mind 10%
Change of process 6%
Cost of not updating 6%
Cost of creation and updating 6%
Central governance 3%
Learning curve 3%

@ Springer

Empir Software Eng

To discover the actual costs related to training, we obtained historical data, provided by the
person who manages internal/external training and courses for employees in the ICT depart-
ment. We used historical data from January 2006 to May 2012. We were able to select those
courses which were related to training in the use of UML, and separate them from other related
topics (like Object Orientation, RUP, etc.). The total amount of money spent by the company
on UML adds up to 24,313€ in a period of six and a half years (which is approximately 3750€
per year). A fair number of interviewees mentioned that they did not need a course in UML,
because they had had training in the use of UML during their tertiary education. This amount
of money invested on UML training is small, compared to the total budget of the department.

On the other hand, a good number of interviewees did consider that training in the use of a
modelling tool should be a potential cost factor. They also thought that the lack of training in
the use of tools would mean a loss of the possible paybacks that the use of the tool might bring.
In the ICT department, 80 people had been trained in the use of a particular UML tool. Buying/
licensing a tool is reported as a cost factor by 32% of the interviewees. Based on data from the
company, we can calculate that tool- licensing costs around 18,000 Euros/year.

Another investment which was often mentioned by interviewees is the cost of the ‘migra-
tion’ of the current situation (especially of documentation) to the new one; i.e. updating the
existing documentation to include UML diagrams where there are none, or where another
notation is used. Formally speaking, this is related more to the introduction of UML than to the
use of UML, yet it is potentially a major investment for companies that are maintaining a large
set of systems. Most comments related to migration came from people who are currently
working on non-UML projects, and who would like to introduce UML, but who consider the
migration of the documentation to be an impassable hurdle. Figure 8 summarises these
findings and relates them to our theory.

In addition, the interviewees mentioned other costs related to the presence/absence of UML
diagrams; these costs are less tangible. Furthermore, the interviewees stated that projects incur
costs also because of poor documentation and modelling.

e Miscommunication: although there is a common knowledge of a standard modelling
notation (based on training at Universities, or specific training at the company), there are
also costs related to miscommunication: “During my study I had a course on UML, but [
think it was a bit outdated, although the basics are still the same. Then I started work in
this department which implements UML too, in part, so you do get to know different
diagrams and how to use them. But even though I think most people have received the
same training, there is still a lot of miscommunication, often. So even having a formalised
diagram does not necessarily mean that everybody is on the same page. If you look at them
all” [Int14].

* Lack of modelling: When there is no up-front design available from the beginning of a
project, there are greater probabilities that a refactoring later will be needed later in the
project, because the requirements were not completely understood. The cost/penalty for
repairing/refactoring the implementation is more expensive than doing lean up-front
design: “I'm convinced that if you did not use UML in the course of a big project, you
would have to do a lot more refactoring; so in UML diagrams or in graphical diagrams,
the structure of what you are going to do becomes quite clear and you can easily see if
there are things missing. It’s a little bit like you have a blueprint and you are going to build
a building; you need a blueprint, to tell you what to put into the foundations, and then
what to establish what you have to do after that, and after that, and after that. It

@ Springer

Empir Software Eng

SE APPROACH
A -
GOAL To reduc » Costs z
A
| increases
drives
* I —_— —?/ Change Management "— — — — — — 4
like
PROCESS —— = . — _P/ Migration of documentation — — — — —
‘ |— —_— _?/ Governance of modeling — — — — — —]
L > O : o
* ntegrating Modeling into Process - — — 1
drives
l l— _— —?/ Training on Notation =~ — — — — — —
like -
SE-PRACTICES/— — — —— —— Model creaton — — — — — — —

—
<
o
Q
(]
=
°
o
£l
=
@
[
I
I
[
I
—_l

drives |

* | | _— 7 Training on Tooling ~— — — — — — —|
like I

SE-TOOLS —m@ — — —— —— Tooling Procurement — — — — — — i
|

|‘ _— —y/TooIing Licencing— — — — — — — J

Fig. 8 Summary of findings about cost-types

determines more or less the order of your development too. If you don’t have a plan of your
building, and someone starts to build, it will at some point collapse for sure.” [Int26].
Moreover, when no up-front design is available, the probabilities of defects finding
their way in are higher. If a defect that leads to operational defects is left in the software,
then this triggers a chain of activities that also involves time from the helpdesk. That may
also have an impact on business processes: “... there is no upfront design [..] we directly
Jjump to the code, we test everything. That's how we started. We failed miserably.” [Int24].
e Lack of up-to-date documentation: One of the comments frequently made in the
interviews was that that people (especially developers and testers) needed to call
other people in the organisation to discover whether the documentation was up-to-
date, because they were not sure if that was the case [mentioned by Int36]. This leads
to costs in effort, but also to significant delays in time if the person cannot be reached
immediately. This lack of one of the most critical quality attributes (up-to-date-ness)
is aligned with the results of previous studies (Garousi et al. 2013). In relation to this,
we asked some of the individuals interviewed about their preferences for software
documentation. We posed them a hypothetical dilemma: They would have to choose
between two different projects: the first one is a project which contains UML
diagrams in the documentation, but the documentation might not be updated; or the
second one, which is a project with updated documentation but without UML
diagrams. Two thirds of them chose the UML project, while the rest (one third)

@ Springer

Empir Software Eng

selected the updated project. Those who chose the updated project argued that UML
diagrams could be generated easily. Those who preferred the UML projects argued
that they prefer to have a quick overview of the system and then go to the code for
details about the current situation.

A summary of the perceived cost factors of modelling is summarised in Table 4.
4.3 Process

Here we present the findings related to the element “PROCESS”. We provide the inter-
viewees’ opinions on the relationship between their development processes or SE methodol-
ogies and the presence of (UML) modelling. This subsection contributes to answering RQ1.
After doing that, we delve into how documentation is used as part of the process of
maintenance of a system. Firstly, some general hurdles in relation to documentation are
highlighted (this contributes to answering RQ3). We then summarise how the documentation
of a maintenance project is used, looking at its usability/usefulness and how it is maintained. It
should be borne in mind that we are talking about documentation in general in these
subsections, but UML can be considered part of that documentation, so the findings can be
extended to apply to UML also, and in fact some of them are specific to it.

4.3.1 Relation Between Development Process and Modelling

During the interviews, we found that the approaches that are principally used at the company
are the waterfall and agile approaches, like SCRUM (75% of the projects are waterfall, 25%
agile). In this subsection, we share insights into the maintainers’ perceptions when we asked
them about the relation between development processes and modelling:

In waterfall projects, there is a lack of communication or discussion. The information flows
in only one direction, and some information is lost on each step. Waterfall approaches therefore
lead to less effective solutions: “If you do pure waterfall style, somebody gets a design
approved and then gives it to some other guy, and the other guy says: ‘Well I looked at your
design, but it's not going to work.” And then the first guy says ‘Hey, it was already done and it
has been approved, so you have to build it this way.” Yes, but it will not work; so there's no
discussion there, which is an even more ineffective approach than if you were to talk about it
first.” [Int16]. The perceived quality of agile projects therefore seems to improve in compar-
ison to waterfall projects, on the basis that: 1) everybody agrees on the solution and 2) there are
multidisciplinary points of view when constructing the solution. It is thus possible to state that
people are more open to revising the design in agile projects.

Table 4 Summary of cost of modelling or not modelling

Costs of Modelling Magnitude of cost ~ Costs of not modelling Magnitude of cost
Training Low Possible misunderstanding Medium

Tooling Low Spending time reading code Low

Creation and update Medium Possibility of defects being incorporated ~ High

Migration High Need for refactoring High

Change people’s mind ~ Low Cost of reverse engineering High/medium
Change process Low

@ Springer

Empir Software Eng

One interviewee mentioned that the use of UML is not compatible with agile
projects, and he would not recommend using it in that kind of projects [Int6]. Never-
theless, his colleagues did not agree with him, because they considered that modelling
is also a good practice in agile development. Modelling can also be carried out in an
incremental manner [Int24], following the philosophy of agile projects, meaning that
using UML does not imply a big design upfront.

We also detected that there is sometimes an incorrect usage of the development
methodologies when there is an effort to save time. This leads to a mix of waterfall
and agile projects: “In waterfall we have the big design upfront, so first you do a full
initial analysis, and then design; when everything is clear you start to develop. That's the
most formal approach in waterfall, but nobody does that. So when a project starts, the
waterfall does document, but the early stage of development then starts on the basis of
the things that are clear at that moment, so we try to mix a little bit of waterfall and
agile. But it’s not the ideal situation” [Int26].

It was also detected that agile projects suffer from a lack of documentation. The
main documentation is carried out directly in the source code as comments. This is
aligned with previous research (Garousi et al. 2015), in which maintainers have stated
that they prefer to refer directly to the source code itself and rely on source-code to
support their information needs for maintenance tasks. This way of working implies
difficulties for newcomers to the project. There is also a clear need to name conven-
tions and use self-descriptive names in the source code. These problems are magnified
when the code gets bigger and more complex. The interviewees considered that the
lack of documentation is complemented by a face-to-face communication and by
obtaining more experience on the same project [Int33]. But in the agile projects,
maintainers also argued that the updating of the documentation should be part of your
‘definition of done’ [Int24], otherwise it would never be done.

These findings about the influence of the SE process in the modelling approach are
summarised in Fig. 9. Finally, on this point, we discuss some remarks regarding the
relationship between modelling and the different phases of a common software life cycle.
Modelling is usually done during the early stages of software development. There is a clear
relationship between the production of source code (during development or during main-
tenance) using all the available documentation, including the presence of UML diagrams,
because UML diagrams are used to guide the development of the software. The inter-
viewees also stated that there is a clear relation between modelling and the software testing
phase, because UML diagrams might be used to guide the testing use cases. They
considered that one of the main issues of testing is to check the alignment of the source
code with the diagrams. If the source code reflects what was represented in the diagrams,
the quality of the system is ensured.

We also found problems in the investment made during the different parts of the software
life cycle. Very often, the investment made in the development phase is insufficient. The
reasons for this could be:

* There is a lack of time to finish a project punctually, which means that the construction
starts before the end of the definition of the requirements or before the completion of the
modelling of the system.

* Sometimes companies that work as suppliers make a bid on a project and allow low
development costs in order to ‘win’ a project when competing with other companies. After

@ Springer

Empir Software Eng

SE APPROACH / Hi APPROACH TO MODELLING
High effort in \,

- . »/ creating \(—
—>(_ WATERFALL) [7 documentation \ -
| characteristic | |

Leads to H;gh completeness

/" Focuson G Y MODELLING PURPOSE
I— g completeness —— | of documentation & — _y updating \4—
N ,,, modeling documentation

| N _/Leadsto/
I /" Relianceon \ |gaqsto /. Missing \ drives

I Ly/ completeness of — ——— 3/ Information is \q ——

PROCESS — L 4 Mostly one way and one N\ | MODELLING PROCESS

_ documentation / /' hardly updated
like
»{ time communication from = —o @ — — —
| _ Architects to Developers
_ ~ drives
drives.
. |_ . hurdle
> . AGLE) — —— MODELLING PRACTICE|
SE-PRACTICES | characteristic Leads |
) —_to Leads / Facetoface
/" Focuson /Focus on critical parts o/ communicationis |
incremental building]' Y iy dogumontation and — — 2/ neededto '«
drives. . andchange _ modeing / complement

I 4'7 documentation | |
SE-TOOLS . - - —
I /" Frequent face to face Leads to J
—

A
»| communication between all b—0y —— —p/ D:c:on;:n?:én
\ roles in development team / 77 isincompl ‘\\

Fig. 9 Influences of the SE process in the modelling approach

doing so, this supplier company builds up unique expertise in a particular system and is
then in a good position to also be awarded many subsequent maintenance projects. The
supplier company therefore acquires a stream of maintenance projects.

These two practices are carried out following “unwritten” rules of the company, although
the interviewees mentioned that solving a problem in the design phase is cheaper than solving
it later, during the maintenance.

Furthermore, there are projects which invest all their resources in the construction of the
system while the company simultaneously attempts to invest a minimum amount in the
maintenance of these systems. As a result, such systems end up being extended in a quick-
and-dirty manner, by means of “patches”.

All of the above leads to longer maintenance projects that are sometimes difficult to change
owing to the ad-hoc means used to construct the system. We would therefore like to state that
cheap developments sometimes lead to unmaintainable systems.

4.3.2 Documentation

Although our interviews focused mainly on UML, some interesting conversations about
software documentation in general also arose. This was due to two factors: 1) we treated
UML diagrams as part of the documentation of the system, and 2) those who did not use UML
talked to us about documentation in general. The responses to those interviews allowed us to
extract several hurdles that hinder the effective use of documentation in general. The majority
of these hurdles (80%) show that the use of modelling is not only a problem of modelling itself
(per se), but also of the overarching technologies used to handle and navigate documentation:

e There is a high level of duplication of documentation in different storage systems:
Alfresco, Jira, Confluence, Dropbox, Shared folders, network driver, etc. This makes the
documentation difficult to manage, to search in, and to update. A reduction of storage
facilities and standardisation would be needed. Otherwise finding documentation for a
system is frequently a time-consuming activity.

@ Springer

Empir Software Eng

» Different projects use different structures (directories, naming) for stored models (and
often files in general). This again complicates the accessibility of information.
Standardisation would be needed to solve this problem.

* People experience difficulties in searching for a specific document/information. This might
be caused by the two previous points on this list. The problem related to the fact that the
information required is believed to be contained in available documentation, but cannot be
found has already been highlighted in previous research (Lutters and Seaman 2007).
Information that is needed is often ‘buried’ in, and frequently scattered throughout,
voluminous documentation.

* For ongoing projects, their documentation may not yet be available in the shared repos-
itories, while peer projects might already need to consult it.

* Techniques used for cross-referencing between documents are not reliable (there are
sometimes shortcuts to non-existent paths, so they are ‘dead links’).

* Once the documentation is found, the reader needs to verify that the documentation is up-
to-date, and consumers therefore need to spend time (especially making telephone calls)
verifying whether documentation is up-to-date.

Each of these issues by themselves constitutes a critical hurdle as regards ensuring that
documentation is kept up to date - critical in the sense that if the documentation cannot easily
be found, the engineer will not bother to use it and will therefore not update it: “So of course
it’s not always difficult to get the data, but then you really need to know the people. That means
that you are depending on people to get information, instead of depending on a good system, a
good document system where you get the data yourself. That’s the thing.” [Int32].

Storing all the documentation in a single document would not be usable, because dividing
documentation is necessary for reasons of size and abstraction. However, this division is
hindering the practical use. The partitioning of information across multiple documents makes it
more difficult to keep information consistent and up to date: “I hate jumping between
documents. That makes it hard to have an overview of what’s what” [Int12]. Another reason
for dividing the documentation is that of presenting different views to different stakeholders:
“The core development team consists of 3 developers, one information analyst and one project
leader; hence 4 ‘technical’ people. In addition to that, there are eight different stakeholders
involved in the project (deployers, databased admin, maintenance, business analyst, or project
architect). Some of them are informed, others need to give different types of approval. Now for
whom should the documentation be optimized?” [Int13]. This practice was also detected in
previous empirical studies (Petre 2013).

Even if a document can be found easily, there is another problem: there is strong agreement
amongst the interviewees that it is hard to find the relevant information within a document:

* Sometimes it is difficult to find information within documents. This problem should be
solved if we are to facilitate the effective use of documentation.

* For example, business rules are not put in UML, but they do influence the design [Int26].

* Often the ‘why’ (rationale) is missing [Int23, Int27].

e It is not easy to search in diagrams/models [Int37, 28].

Another problem detected, also related to the documentation is the fact that it is based on
projects rather than around systems: “You would like to have a distinction between system

documentation and project documentation, and both have a valid position throughout the

@ Springer

Empir Software Eng

documentation, but that is not really the case at the moment, unfortunately” [Intl]. This
increases the traceability of changes per release, but it complicates the understanding of the
system as a whole. “Well, it depends; for example, project documentation [..] nobody really
reads it, as there are only a few documents that are really interesting, so...on one hand there’s
too much documentation [..]. So for the....to keep documentation, [..] if a process is changed
in the business or if a software is changed, not always has the documentation also been
changed, so I think there should be a way where you say <<Ok, this is part of it as well, so
change the documentation too, including a review, so that it’s better managed>> not only
manage the system but also the documentation. There I see a lack sometimes, but the project
documentation is sometimes just too much. That usually takes too long; it’s too much, and
nobody reads it.” [Int32]. What is more, processes do not enforce the updating of documen-
tation when software is changed. This is supposedly compulsory for all changes, but it is
completely unmanaged as things stand. Having some type of process control could be good
(and would be easy to implement in a tool).

As a reflection which could be extracted from the problems mentioned in this section at this
point, we would like to point out that the use of modelling is not only a problem of modelling
itself (per se), but also of the overarching technologies used to handle and navigate
documentation.

In this section, we have already discussed several issues related to the documentation of a
project. Nevertheless, there are other issues containing sufficient entities to be treated inde-
pendently. In the following subsections we would therefore like to highlight findings related to
the maintenance of documentation; these are findings about how the documentation is being
used as part of a project, as well as about the usability/usefulness of the documentation itself.

Maintenance of Documentation: We also asked the interviewees about the mainte-
nance of the documentation (in general, not only the diagrams). It is very surprising that
the maintenance of documentation took place in only 39% of the projects on which the
interviewees had been involved, although this result is aligned with that obtained in a
previous survey (Forward and Lethbridge 2002). The interviewees stated that some of the
reasons for this might be the following:

* It is not clear who is responsible for maintaining the documentation.

* There is a lack of compliance to processes. In addition, there are sometimes organisational
or process problems blocking the maintenance of the documentation.

* There is a feeling akin to “don’t care’ about maintenance”. This is an attitude issue, and
maintainers considered the documentation to be a low priority task. When updating
documentation is not a task that is enforced, it will be relegated. This has to do with the
fact that the benefit of documentation is felt by people other than those who create the
documentation; the creators of the documentation therefore consider it a burden.

* Small changes are not represented in the documentation (especially in the diagrams). Small
changes could be maintained in the text of a document, but it is very unusual to have the
need to update a diagram. Where a diagram might be changed for a small maintenance
task, it would be the sequence diagram. The same occurs when a technical modification is
made. That means that only structural changes (which are not frequent) are reflected in the
documentation.

* There is a lack of time, which does not allow team members to “spend time on secondary
tasks” (time pressure). Sometimes they need to make “urgent” changes, and these are not

@ Springer

Empir Software Eng

reflected in the documentation. If no time can be found to update the documentation while
the maintenance of a system is being carried out, it would be useful to update the
documentation after the project has finished. However, there are no incentives to report
out-of-date documentation, or any processes with which to do so.

* Team members tend to memorise the systems and leave the documentation. They do not
need to update the documentation, because all the information is “in their heads”. This
then leads to a problem of knowledge evaporation when a team member leaves the project:
“[think lots of information is also in the heads of the people working there, which was also
the case in our mainframe department, but there was always a focus that it should not be
only in the heads of people, because if people go away ...” (a perspective from an
information analyst and developer who moved from waterfall to agile) [Int35].

* Some interviewees argued that the stakeholders do not want updated documentation. They
only pay for a maintained system, and they do not care about the documentation. In such a
setting, a team finds itself applying all its resources to the source code, rather than
investing a small part in maintaining the documentation.

Several reasons were given for not maintaining the documentation, but the maintainers also
know that not doing so has several risks:

* Documentation which is not updated becomes an incorrect basis for the maintenance in the
future “/..] but in the end it becomes a problem because no one knows how the system
works, and so some developer needs to look into the doc and from the doc, to determine
how it works. So then at some point, the diagrams and the code work totally differently;
then you have a problem with everything, with your maintenance, because existing
diagrams are also determined to be a basis for making a code for further enhancements
of a system” [Int26].

* Non-updated documentation might lead to mistakes becoming incorporated into the source
code “For example, let’s say 1 year the team does diagrams and the code religiously; they
give them ‘in sync’. The next year, for some reason, nothing is in sync, due to project
pressure, and the 3rd year, if someone wants to refer to the diagram and then goes on with
coding, there will be issues. So yes, it is helpful if kept in sync with the code” [Int37].

Another important point is that when the documentation is not properly updated, problems
related to low traceability between software artefacts could arise “I'm reading this but it does
not correspond to what I'm seeing on the screen. And the only thing we have lefi is to ask a
developer how this piece of functionality is implemented, because I cannot find it anywhere.
Afier this we can make a new specification, but it really also delays both the maintenance track
and the project” [Int14]. This finding agrees with the survey of (Nugroho and Chaudron
2008), in which respondents highlighted the importance of maintaining the correspondence
model-code. They argued that, from a software maintenance perspective, we lose the main
benefits of models as an important source of architectural information when software models
no longer correspond to the implementation code.

The reasons mentioned for not updating the documentation (including or not UML
diagrams), and the risks of skipping this step are summarised in Fig. 10.

We conjecture that the difficulty involved in updating the documentation has an inversely
proportional relation to the level of detail (LoD) of the documentation. When documentation
(or a diagram) is represented using a high level of detail, the understanding of the system is

@ Springer

Empir Software Eng

SE APPROACH

APPROACH TO DOCUMENTATION p .
— »{_Unclear responsability)

GOAL MODELLING PURPOSE I_ _N/Lackofccmpliance*\
__ toprocess /

/" Low priority hY
I_ _> (attitude)

I— —V\ Lack of time \

*
PROCESS . /" Skip updating because) /Memorized syslerv’\s\‘
IiHETEED DOBELLES Rl -N\ documentation / p (doc not used)

1

drives drives|

L /" Not part of
drives risks s __ deliverables /
.’
SE-PRACTICES |
v v
drives / * \ / \
* / \ /" Incorrect Possible
Low a \ a a
/ traceabilit b basis for introduction
SE-TOOLS / Yo\ maintenance of new errors
\ \

Fig. 10 Summary of reasons for not maintaining documentation, and risks involved in not maintaining
documentation

increased, but the ease of updating it is decreased, and vice versa. Projects need to find their
‘ideal’ level of detail which might balance those concepts. Different levels of abstraction in
documentation are found because of the fact that different versions of the documentation are
created for different purposes. Low level of detail is created to satisfy the mandatory process
and also to communicate with the business stakeholders, while documentation with a high
level of detail is created for (more technical) communication within the maintenance team.
This shows us that different people need different LoD.

Use of Documentation: We also investigated how the documentation is being used. We
detected first of all that the value of documentation decreases for some stakeholders when their
expertise with the system increases. When a maintenance person needs to understand a system
that is new to him/her, s/he first starts to read the documentation. In most cases, source code is
a secondary source by which to understand the system (except in the case of a couple of
developers, who prefer working directly with source code). This contrasts with the results
obtained in previous research (Garousi et al. 2015), which show that maintainers prefer to refer
directly to the source code itself and rely on source-code to support their information needs
during maintenance tasks.We might, therefore, think that documentation is only used to ‘get
familiar’ with the system: “Once a maintenance engineer is familiar with a system, he hardly
needs to look up information in the documentation.” [Int18]. When a developer is not familiar
with the system, the documentation is consequently perceived as useful. But once the same
developer has become experienced with the system, s/he has a mental model of the system in
his/her mind and uses it as a basis on which to work. Once in the latter state, documentation is
perceived as less useful. These results are similar to those presented by (Garousi et al. 2013),
who mention that during maintenance, documentation is used on average in only 18% of cases,
while code is used with a frequency of 50%.

When focusing on the use of UML diagrams as part of the software documentation, we
detected that maintainers sometimes create their own diagrams. They do this for their own use
to describe the system they are maintaining and to summarise what they see in the source code.
The purpose of these diagrams is not, therefore, to document the system, and as such this type
of diagrams is not stored: “/ describe a design that I plan to implement [..] and sometimes I use

@ Springer

Empir Software Eng

an enterprise architect to draw some diagrams, UML diagrams, but we don't really document
a lot for development.” [Int19]. This is in the same direction as the results of Garousi et al.
(2013), who highlight that design documents do not provide that much benefit during
maintenance. In this case, we detected that the design is not documented and that this would
not be a problem for the maintenance tasks. However, the UML models are documented and
used during this phase.

Architects can use the UML model to check that the implementation conforms to their
intention. “UML is your reference of what it should be, but you have to check if the code that is
delivered is in fact aligned with your UML diagram. [..] At some point in the project, we did
not do that functional test, but I also reviewed the code, to see if the structures were as I
intended them to be according to the diagrams.” [Int4].

Usability / Usefulness of Documentation: We observed that the size of documentation
matters. Moreover, the size of documentation has an impact on its usability. A large number of
pages is considered impractical [Intl18]. Some people indicate that 20 pages is already
considered to be a lot. Another important factor that influences the usability of the documen-
tation is the language in which it is written. Sometimes companies tend to force to their
employees to use English as a common language in the company, yet employees would prefer
to document in their native language: “I think documentation or source code of programs
should be in the language that we speak and that we can read and that we feel, and this is not
English. I call it “Denglish” (Dutch-English). What another Dutch person means when he
stated something in English is sometimes very confusing, then you read it and you think ‘Oh,
well, I thought you meant that, and not this.”” [Int36]. That freedom to use the local language
would not be possible in the case of offshored projects.

It is also noteworthy that the usability of documentation is perceived differently by different
people and throughout different phases of the system’s development [Int26]:

* Architects prefer high-level overview pictures.

* Integration architects believe that sequence diagrams are the most important type of
diagram [Int26].

* Programmers spend most of their time looking at source code. But when programmers
look at diagrams, these need to include sufficient detail to allow programmers to relate the
diagrams to the source code they are working with (i.e. high traceability is required).

We also detected that UML diagrams would be more helpful if they were executable
models. This beats UML when that is used as box-and-lines: “There was one project which
used a BPMN' engine. With that you can model the business process in the tool and actually
execute it. And it was also very helpful to have another way to know how it should work, as a
reference. That beats any UML diagram, because UML doesn'’t execute, it doesn’t work, it is
not physical, it is just box and lines.” [Int4].

When focusing on the usefulness of the documentation, we detected that if the system (or
part of the system) is simple, then no documentation is created [Intl8]. Maintainers mentioned
that they only document important things. We asked them next about their definition of
“important things”. Maintainers agreed that a part of the system should be documented if: it
is a complex part, or if it is a critical part, or if the part is not obvious [Int16]. Other reasons for

! BPMN stands for Business Process Model and Notation

@ Springer

Empir Software Eng

deciding when to document something or not are agreed by the team. Moreover, if the system’s
life is expected to be short, not too much information is documented.

4.4 Practice or Style

These subsections contribute to answering RQ1. A summary of the findings obtained as
regards practices or style is presented in Fig. 11.

4.4.1 Diagramming Practices: (standardized) UML or Freeform

We asked our interviewees whether they used UML or other graphical notations during
software maintenance. Some of the interviewees mentioned directly that they use UML, and
others did not (Table 5). There were those who said that they know the UML diagrams are
being used by their colleagues, and they know this because, for example, some of them have
printed copies on the wall. Some others considered screenshots as graphical notations to
communicate layouts on interfaces.

Almost a quarter of the people interviewed (23%) considered that the documentation they
use does not contain diagrams at all, as opposed to 77% of them who considered that it does.
Of those who use documentation containing diagrams, 94% of them stated that they use UML
diagrams, as opposed to 6% who consider that they use other notations.

The most commonly-mentioned UML diagrams are: sequence diagrams (69%), class
diagrams (55%), activity diagrams (36%), and deployment diagrams (23%). Other UML
diagrams were also mentioned, but in lower proportions: i.e., collaboration diagrams, compo-
nent diagrams, package diagrams, statechart diagrams and use case diagrams. These results are
in line with previous surveys (Dobing and Parsons 2006; Fernandez-Saez et al. 2015a;
Hutchinson et al. 2014).

APPROACH TO UML MODELLING

MODELLING PURPOSE

drives

MODELLING PROCESS AT
,—}\\ﬁhlgh)
4 O\
{ Levels of Detail
‘ | - |)\\ evels o ea|74/o—|
rives rive: -
,|, LN\ low)
MODELLING MODELLING || |
PRACTICE

STYLE |

)/sketch\\
I— { |
4 Y /
—N\ orr allty/—

I = N\ /~ Reduced
}@andarlseﬁ)— _y\misunderstandings/

Fig. 11 Summary of findings about Style

@ Springer

Empir Software Eng

Table 5 Presence of diagrams in the documentation

Presence of diagrams in documentation % of interviewees
Contains diagrams 77%

UML 94%

Non UML 6%
Does not contain dia' grams 23%

It is surprising that some interviewees referred to diagrams that are not part of the UML set
of diagrams when asked about the UML set. Those most frequently mentioned are data flows
and data models. The nuance aspects of notations are not used, and developers largely use the
common concepts: “I have seen so many names for the same thing. [..] UML or ERD; it is all
the same, in my opinion” [Int13]. There was also a common confusion when talking about use
case diagrams, because some users considered them to be a table summarising a use case like a
“diagram”. This is based on the general practice of describing use cases by using a table.

We also asked UML users about the LoD of their use of UML diagrams. There were more
respondents using high LoD UML diagrams rather than low LoD. Some developers also
mentioned that the decision about how many details should be in a UML diagram is an
architect’s decision, and developers are not taken into account. This finding may indicate that
there was uncertainty amongst developers as to what extent that freedom could be exercised,
because a model should explain how the system works without allowing programmers too
much freedom to determine implementation details, as highlighted in (Nugroho and Chaudron
2008). On the other hand, there are developers who have access to UML diagrams (either from
an architecture/design diagram or from a previous stage of development), but they do not use
them because they do not have sufficient details. Developers are used to working with the
source code, which contains many details, so they draw their own diagrams based on the status
of the current source code in order to have a more detailed diagram, compared with the one
created by the architect.

In summary: the use of graphical diagrams is very common. Within this, the use of UML is
common. Moreover, the UML notation is used to represent diagrams from other design
paradigms (ER, data-flow and context diagrams). Different stakeholders have a variety of
purposes with models, and as a result use a range of levels of details in their models. This
practice (adapting the diagram depending on the audience) is common in industry, as presented
in related work (Petre 2013).

4.4.2 Influence of UML Usage on Quality of Software

We asked the interviewees about the quality of the final product and its relationship with the
use of UML diagrams: “Do you think using UML has an impact on the quality of the final
product? How?”

In this case, the respondents considered the quality of source code related to performing
correct testing and obtaining positive results from it; i.e. obtaining a source code that is aligned
with requirements and design: “Quality is the result of checking the result too, so UML is your
reference of what this should be, but you have to check if the code that is delivered is in fact
aligned with your UML diagram” [Int4]. This is in harmony with the results of the survey
presented by (Nugroho and Chaudron 2008).

@ Springer

Empir Software Eng

Employees working on projects which do not use UML diagrams commonly believe that
the presence/absence of diagrams is related to a high/low quality of documentation, respec-
tively. It is very important to note that there is almost a general consensus amongst all
interviewees that the use of UML improves software quality (89% agreed, and 11% believed
UML is not related to software quality). The reasons given in support of a relationship between
use of UML and high quality are:

e The use of (automated) modelling tools improves productivity.

* The sharing of knowledge is improved.

* A peer-review process makes it easier (and highly recommendable) to adopt when UML is
available.

In relation to software quality, we also asked the interviewees about the possible relation-
ship between the use of UML diagrams and the presence of defects in the code of the system:

A couple of interviewees considered that UML usage reduces the phenomenon of defects
managing to get into the code of the system, i.e. UML prevents defects, while another person
replied that they believed that UML increases defects (but only whenever they are not
updated). This contrast indicates that neither the positive nor the negative effects are perceived
to be very significant. It can also be seen that some interviewees thought that there is no
relationship between software defects and UML in itself; the defects are caused by an incorrect
solution, but UML is not the problem.

More than half of the interviewees were of the opinion that the use of UML is helpful when
searching for the cause of a problem in the source code. Sequence diagrams are especially
valuable for this purpose: “Sequence diagrams are also very useful, for example, if there are
bugs or issues on-line and we don’t know how the bug works, how the bug exists there, which
components are affected and need to be looked into.” [Int11]. This is in contrast to the results
of a previous survey (Nugroho and Chaudron 2008), which shows the respondents’ indecision
on the impact on quality of using the UML on software testability and correctness (defect-
count). Respondents in that survey might not have been exposed to testing of plans or criteria
constructions using UML models, in contrast to the interviewees in this study (one of the main
purposes of using UML in this study was to test guides). Early and more thorough thinking
about the design leads to higher quality of design. Moreover, as stated in a quote above, while
this may incur some more effort in the design stage, the respondents were convinced that there
is an overall benefit in productivity. We would like to stress that although the quality of the
design might be improved with the techniques mentioned in this section that does not have to
be reflected in the quality of the source code in terms of an improvement. This is because the
quality of source code deals with issues different to those from design, such as following
naming conventions, having a correct commenting system, using a correct indentation,
optimising the nesting depth of loops, etc.

4.4.3 Standardisation

We asked the individuals we interviewed about standardisation in their ways of working. In
this case, we focussed on those standards used to document the system and the activity of
diagramming. Only 1 interviewee considered that there is excessive standardisation, while
31% believed that there is a lack of standardisation. These respondents felt a need for more
standardisation in relation to the following:

@ Springer

Empir Software Eng

* Naming: naming conventions for classes, attributes, etc., in code and diagrams.

* Layering: it is not clear what the recommended layering of the system is.

* Style: There are many issues related to the style of diagramming (and subsequently of
coding) which are not clear.

* Level of detail: it is not clear at what level of detail systems should be modelled.

“We use different terminology, different naming, different layering” [Intl]. They argued that
the standardisation should be established in the early phase of a software life cycle, in order to
obtain the maximum benefits during the rest of the project [Int14]. They also emphasise that
the standardisation should be done right across all the teams if it is to be successful [Int4]. The
interviewees considered that standardisation plays a very important role when third parties are
involved [Int12].

Although the needs mentioned above arise when asking for diagramming, some
respondents highlighted the need to also standardise the source code (naming conventions
are needed) [Intl17], and text (what should be written and the structure of the document)
[Int25]. The main benefit of introducing standardisation in any of the items of the software
documentation that was mentioned is always a reduction of the risk of misunderstanding
[Int23]: “A standard is something that will be understood by all people, across all
platforms.” [Int28], or “The problem in ICT is that every platform uses its own language,
its own way of looking.” [Int28].

Independently of their opinion on the presence of standards at the company, many of those
surveyed agreed that there is a lack of compliance with the standards. They justify this, using
the following reasons:

* The way they work is intuitive, and they do not need to follow other standards [Int10].

* They have previous knowledge, and they do not need to follow all the standardised
processes [Int10].

* They believe that standards do not help in every case, and sometimes these standards are
not applicable [Int16].

* They also believe that there are items, such as text which, unlike diagrams, cannot be
standardised [Int28].

Those who mentioned that they do not follow standards explained how they work. The
majority of them use solely box-and-line diagrams (19%), while others use standard UML, but
in a non-strict manner: “Because there is no real standard, people use their own inventions”
[Int18]. This finding is aligned with “selective use” of UML detected in previous studies (Petre
2013), where UML is used in design in a personal, selective, and informal way, for as long as it
is considered useful, after which it is discarded. Advanced features of the notation are not used,
and do not therefore need to be updated. Moreover, some interviewees use diagrams that are
similar to UML, but may not use all its elements correctly (for example the different types of
arrows in a class diagram) [Int3]. In some cases they use the formal UML specifications, but
they mix them with their own notation to complement them [Int5], and they complement the
diagrams with personalised legends in order to clarify the non-UML part of the diagram [Int23].

The individuals who gave their opinions also noticed a problem with standardisation: when
a system is very old (especially in the case of legacy systems), the documentation contains a
mix of different standards that had been adopted for several years. We are therefore of the
opinion that standards have a short life-time: “I've heard a lot of standards over the last

@ Springer

Empir Software Eng

13 years, and what is standard now isn't so standard in few years’ time, because then there is
another standard. [..]What is standard now is not so standard 5 years from now.” [Int27]. One
benefit of using only ‘box-and-lines’ in diagrams is that it makes them independent of the
evolution of the UML notation.

It was also surprising that maintainers know that the diagram they are creating is not
correctly written, but they deliberately write it in that way in order to trigger discussion: “/¢ is
better to be unclear than to be misunderstood.” [Int12]. The idea behind this is that a reader of
documentation will recognise that a part is unclear, and this triggers him or her to ask for
clarification. Whereas a misunderstanding will lead to a wrong (design) decision.

In many cases (63%), Visio is used to create diagrams. Visio supports the UML
notation, but does not enforce the syntax as strictly as a dedicated UML-CASE tool does.
Arbitrary graphical shapes can be connected without regard to their meaning and hence
without keeping syntactical rules. Moreover, Visio does not create an actual model of the
system, only a diagram. Visio thus does not support consistency inside diagrams/models or
across diagrams/models.

It was also surprising that in some cases, the interviewees are following a standard notation
but they do not know that they are. They merely copy the way of modelling that is already
being used in the documentation: “if sometimes I have to make new diagrams or I have to
change them, what I do is just use what is used in that system” [Int27]. This means that the
formalised documentation is sometimes produced using previous documents as a basis.

Another problem with standardisation is that it is sometimes very strict, and slows the
maintenance process down. There is usually a formal procedure for the approval of milestone-
documents. This process typically takes a long time, and thus slows down the development.
This discourages people from asking for approval or even from making (small) updates to
milestone-documents [Int18].

Mechanisms to incentivise the correct use of standards should thus be introduced: “If you
let people choose, you lose all your advantages. So, yes, force them” [Int8].

Sometimes standardisation is not provided by the company, and producers of documenta-
tion agree with the consumers of the documentation on the meaning of their diagrams (it would
appear that this occurs in a just-in-time-manner). Once common agreement is in place, this is
an effective way in which to work: “Because there is no real standard, people use their own
inventions” [Int18]. The only risk to this is a change of staff. This practice of using a common
agreement about meaning takes place because the team members, and especially the business
stakeholders, sometimes lack knowledge [Int23].

We found that there are also some concerns regarding the use of documentation as a
standard step of the maintenance process that are related to the team members’ attitude.

* Some developers do not like documenting, and they consider that this is the responsibility
of other team members: “I am not a writing person, I am a building person. I hate
documentation because I am a technical guy. [..] We are not documentalists. We are
builders. That is a different state of mind.” [Int13], or “Developers don’t like to write
documentation” [Int6].

* The documenting part of the project is considered to be a boring part, and maintainers try
to avoid it: “documentation is almost a dirty word you should not use.” [Int35].

e From a selfish point of view, maintainers believe that documenting is work done only for
others “If I write documentation then I am helping a colleague.” [Int13]. Previous research
(Lutters and Seaman 2007) has highlighted that documentation that is written from the

@ Springer

Empir Software Eng

perspective of a maintainer (and is sometimes even written by a maintainer) is especially
useful. It would, therefore, appear to be important to take this point of view into account.

* Sometimes developers do not follow the specification provided; they do the maintenance
and then implement what they consider to be a better solution: “often they [developers]
Just don't listen. They just do it the way they think they should do it.” [Int1].

A summary of the findings about “PRACTICE” discussed up until this point is given in
Fig. 12.

4.4.4 Use of Reverse Engineering

During the interviews, we asked the subjects about the use of reverse engineering, especially
when diagrams are not available. The first observation is that sometimes people do not know
that a (UML-case) tool can help them to automatically partially extract a diagram which can be
used as a basis for creating UML diagrams.

In the case of projects for which UML diagrams are available, the diagrams (along with
other documentation) are in many cases not updated according to the changes in the source
code. In these cases, the interviewees considered the use of a reverse engineering technique to
be a very helpful tool in obtaining a trustworthy diagram. We found that reverse engineering
sometimes takes place, but this process often requires additional manual work. Indeed, the
interviewees considered reverse engineering to be a lot of work: “That’s a nasty question,
because the documentation should preferably be up to date. You want the documentation to be
correct, so try to get documentation up and running up to the situation as it is. [..] In practice
this is a very tedious job, because you have to be really specific if you want to describe a piece
of software. It basically means digging into the code and seeing what is going on exactly here,
and here. As I'm not a Java expert this really delays the process, because you need both kinds
of people to reverse engineer the documentation. That means it is usually not done” [Intl4].

Alternatively, when no graphical documentation is available, UML diagrams are manually
RE to attain an understanding of the source code [Int19]. We therefore found some cases in
which people carry out automatic reverse engineering, but after the automatic process, a

/ improved source _—
SE APPROACH | like >\\ code quali) I/APPROACH TO UML MODELLING|

Does not garantee

| 7~ Improved "
GOAL (design quaity)€ — —— —lke — — MODELLING PURPOSE
I ~ 1
_—)\Peer-rewew _—————

Leads to drives.

——>{tanago Consitoney y— — — — — —
——»{ Version Control) MODELLING PROCESS

e
drives I F‘mpm ——»(Sharing knowledge)— — — —|

frpry—
Ve \ f— —— —— ——{Use of CASE tools €
— »(Usage of UML) ahihieetete’/ AN | drives
| +
" like
I_ — —>»(_ Defectdetection j— — — (RE) L ODELLING PRACTIC

I— — —>(_Earlier thinking desing)— —f —{_ High traceability)€~ ——
Leads to

. drives L — —(comeat (esllng)— _—— |
~—
[——
Cluttered/ licated
+(Clutteredicomplcated 1
SE-TOOLS _ diagram i

Fig. 12 Summary of findings about Practice

@ Springer

Empir Software Eng

manual process is needed, when the architect tries to “clean” the diagrams. The people who
responded considered this process to be difficult, because they were not able to deduce the
implicit policies that were used to generate that specific diagram, or why something is
structured in that way, or if a design pattern was used: “You have to go through the code in
a rather labour intensive way and look at the classes most of the time. You have to try to
deduce, on the one hand, the business concepts and the patterns that have been applied, and
the policies that have been driving the design, how clear any policies were, and then you make
the diagrams. Of course you can do automated reverse engineering of all classes that have
been implemented. But this would also produce the framework classes, so the level of detail is
extremely high if you do automatically. It is actually useless to do it like that. You therefore
have to go through the code as a human being and try to deduce the intelligence that is in the
design, and then make the model. In that sense it is less useful than if you have applied it from
the top-down approach” [Intl]. In reverse engineering “it is hard to understand why a certain
function was there, or is not there at the present time” [Int24].

Although the “cleaning” process is carried out by the architect in the early phases of the
maintenance project, there are developers who would like to have the original reversed
engineering UML diagrams, because these are more traceable to source code. In such cases,
they would consider the UML as the “truth”. However, this approach loses followers when the
projects are very big and diagrams become unreadable.

We asked the UML users if they would prefer a diagram which originates from a forward
design process or from a reverse engineering process. In most of the cases (70%), they prefer
the forward design processes.

Some other problems found with Reverse Engineering are listed below:

* Models capture information that cannot be extracted from the code. This is an architect’s
perspective: “Reverse engineered models are completely not useful. Too detailed. Not the
right semantics. No abstraction.” [Int4].

* Sometimes the RE diagram is drawn up by a single developer; the design is not therefore
discussed and hence not disseminated between multiple developers in the team. Reverse
engineering eliminates the growth of a shared understanding [Int4].

* Programmer’s perspective: “I prefer the reverse engineered diagram over the diagram
from the architect because it is easier to update with the changes that I make to the code.
[...] To get an overview I don’t recommend using RE, except when there are no forward
diagrams.” [Intl11].

* FD and RE design models may use different naming for class names, methods and
operations. As a result, it is not easy to use them together/merge them: “reverse engineered
diagrams are a bigger truth than the forward engineered diagrams, because ... you may
have different names of objects in the design and in the code, but in reverse engineering
there is no choice, you just import your code, so there is no way you can have this.”
[Int37].

* RE diagrams contain too many details: “there are properties of an object, which T will
never model; I just say it has a list of properties. Then in a reverse engineered model, I get
like 10 properties actually, and so I have the problem of ‘Oh what is this anyway?’”
[Int24]. “The detail of reverse engineered diagrams is not very usable” [Int3]. “For projects
with lots of code you get lots of diagrams, with all the details, but they are not really
readable. [..] If these tools generated some diagrams with less details, that you could
specify how detailed it should be; then maybe they would be useful.” [Int19].

@ Springer

Empir Software Eng

* RE diagrams do not recreate the desired layouts: “/ could reverse engineer from an SAD to
UML, but then the whole thing is: it has to be rearranged” [Int3]. The layout created in
forward designs contains semantically-meaningful information for the designer. For ex-
ample, related classes are close together (even if there is no association between them).

* Reverse Engineering is time consuming: “it took me ages to do reverse engineering and
then figure out those sequence diagrams.” [Int37]. This relates particularly to extracting/
abstracting dynamic information.

In summary, we conclude that:

* For programmers, reverse engineering may be a practical way to obtain a diagram that
describes a fragment of interest of the system in hand. Yet programmers prefer the design
to be updated automatically.

» For architects/designers, reverse engineering is not considered a practical option because:

— Ityields diagrams that are too detailed and that require significant efforts in manual process-
ing. In particular, details need to be left out, and a meaningful layout needs to be created.

— The Reverse Engineering functions of current UML case tools fail to recreate dynamic/
behavioural views of the systems.

— Using Reverse Engineering to recreate a design model after the facts (i.e. after (much) of
the programming has been done) may result in the omission of discussion about the design
that would otherwise increase the shared understanding of the design of the systems
amongst the developers.

4.4.5 UML Versus other Graphical Notations

We asked the interviewees to compare UML with other notations which are in use at the
company and which might be used instead of UML.

Some of them referred to Archimate as an alternative notation to help in system modelling.
They were of the opinion that Archimate is a better notation for business models [Int2] than
UML, but that UML is more useful for modelling functional documentation. UML is also
considered to be a modelling language that is easier to discuss (especially for developers) than
Archimate [Int26]. One advantage of using Archimate rather than UML is that Archimate
comes with some guidelines for design, such as layering to help in design [Intl]. The
disadvantages cited by the interviewees are that Archimate is less powerful, and too abstract
[Int23]. Nonetheless, one person considered that the use of UML in combination with
Archimate would be very beneficial [Intl]: “UML is easier, so I would say in discussing,
while designing or building systems, or in making the preliminary design steps it is better to
have UML, because it’s easier to discuss. But if you are working on the border-line between
say, hardware, system software and sofiware, ARCHIMATE is better, I think, because it can
warn you of certain problems that might arise if, for instance, you design a heavy application
and have only one server. So it depends on your goal.” [Int23].

Other notations were also mentioned as good candidates for complementing UML:

» User-interface perspective/Screen layouts [Int18] and maybe screen-flows.
* Executable specifications (esp. BPMN) [Int1].

@ Springer

Empir Software Eng

Finally, Domain Specific Languages (DSLs) were also referred to. The diagrams generated
with this kind of notation are not regarded as adaptable as UML, because they are only able to
present one dimension/view of the system. This would have the advantage of providing a
better understanding of that view of the system, because it might contain lots of details. But
there is the risk that something else might be lacking, because diagrams are usually created
from one point of view (structural view, network view, behavioural view, etc.). All the aspects
may not be placed together: “But sometimes our projects deliver those messages in DSL itself,
which I find so much easier to look at, because you can see it more or less in only one
dimension; it’s a very hierarchal thing. In UML you can put things next to each other; you have
2 dimensions.” [Int3].

When we asked the interviewees about the modelling notation, some of them were not able
to answer which notation they were using. When digging deeper into this category we
discovered that 38% of the interviewees uses arbitrary graphical notations (or box-and-lines),
or that only the basic elements of the UML syntactical notation are used in documentation:
“Rectangles and lines. It does not have any symbol [..] with arrows, dots or hollow or full
circles.” [Int18]. Some of the reasons for following this approach are summarised in the
following list:

* Some developers adapt their notation to the one that is already used in the existing
documentation. Being consistent with one existing document is of more importance than
having consistency in all the documentation for different systems. The documentation of
old systems, therefore, typically uses old graphical notations, and continues to do so even
after recent extensions.

e Using only ‘box-and-lines’ in diagrams makes diagrams independent from the evolution of
the UML notation. If advanced features of the UML notation are not used, then they do not
need to be updated either. The fact that the UML notation has had several major and minor
revisions of its standard (at least 3 major ones in 10 years), has been a factor in reducing
the eagerness to conform to all the details of the syntax.

* People that create documentation assume that the reader has a certain level of domain
knowledge [Int21], but sometimes this is not entirely true, because the consumer of a
document is, on occasions, a business stakeholder.

* “You can achieve the same with Visio as with UML, but you need to align how to use it.”
[Int26].

We researched the conformance of diagrams to the UML standard(s) in a collection of 35
Global Software Designs at our case study company. This set shows that 40-50% of the
diagrams are formal UML diagrams, compared to 60—50% of the diagrams which are not
UML. In this last group we found some diagrams of other notations, or diagrams which seem
to be UML but which are actually not (box-and-lines, or people’s own inventions).

4.4.6 Comparing Text and Diagrams

One important issue that was discussed during the interviews was whether the use of diagrams
(especially UML diagrams) is more helpful in understanding the system than documentation that
consists only of text. Those interviewees who had been working at the company for a very long
time, who had not used diagrams during all their time at the company, and who had not had
training on UML diagrams, considered that diagrams would not be helpful for them. We might

@ Springer

Empir Software Eng

explain this as being due to fear of change, but also because of unfamiliarity with the notation. In
contrast to this group, the majority of those who replied to the questions considered diagrams to
be a very helpful tool as regards understanding the systems and the changes which need to be
made to them. They based the benefits of diagramming on the possibility of increasing the level
of abstraction of representing the system. The following sentence was repeated in the majority of
the interviews: “A picture explains more than a thousand words.”

The interviewees who argued in favour of using diagrams because they believe that this
improves the understanding of the system, did so for the following reasons:

* People are visually oriented [Int5], and they usually prefer visual notations [Int24].

* Diagrams help when searching for something. It is faster to look for something in a picture
than to read a long text, because of navigational issues. This view is supported by the
majority of interviewees, although one person did not agree, pointing to the fact that there
are lots of tools that support text search [Int37]. A reader can judge quickly whether a
diagram contains the information s/he is looking for. Judging this in text requires paying
closer attention and thus more time: “People are more likely to skip over a piece of text
than over a diagram.” [Int31].

» Text is so much more difficult to maintain than diagrams [Int37]. This may be related to
the previous bullet: it is difficult to find the piece of documentation to maintain. Further-
more, it is important to highlight that the maintenance of diagrams requires skilled people
(the maintainer, at least, needs to know the notation), but the maintenance of text might
well be done by anybody [Int25].

» Diagrams are easier to understand than text [Int32], although depending on the type of
diagram, not everybody might give the same interpretation [Int28]. In relation to the
understanding category, we detected that pictures solve problems of understanding for
dyslexic people. This is not a very common condition, but it was one that some of the
interviewees suffered from [Int13]. Some interviewees also highlighted that diagrams are
easier to understand in the context of systems because they describe relations in easier
simpler way [Int12]. Moreover, the presence of diagrams in legacy software documenta-
tion is very valuable for an easier understanding of the system [Int19].

* Diagrams are easier to compare than text: “It’s easier to put two diagrams next to each
other and look at them and see the relation between them. Text?... it's much harder in
that.” [Int12]. This means it is easier to detect what has changed in a diagram than in a text.

* It can also be said that text presents difficulties as regards facilitating the traceability with
other documents, or with source code [Int9], because diagrams are better at representing
structures: “text just lacks the means of connecting all the components, and it’s also very
difficult to keep track of all those dependencies that you have in the environment when
somebody is just telling you what there is/arve, or is writing down everything simply
because you want a quick overview of everything that there is” [Int31].

Some of those surveyed said that text is regarded as cheaper (in terms of cost) than diagrams
[Int28], because everybody knows how to write, but not everybody knows how to use a
modelling notation. Modelling can enforce systematic use (syntactic correctness), but when
using natural language text, much more freedom will be used in writing [Int28]. There is also the
issue of information density. Diagrams can convey a lot of information. This is good for
abstracting, but may be easily misunderstood by non-experts in the notation [Int12]. Further-
more, creating graphical representations early during development enables such errors to be

@ Springer

Empir Software Eng

found and corrected while their repair is still ‘relatively cheap’. This is in comparison to
refactoring such structures later in the project when much more code will need to be checked/
changed. The lack of a systematic use of language might lead to more possibilities of errors
creeping into text than into diagrams, because creating a diagram entails a more detailed thinking
process: “I think you can make a mistake more easily in text than in a diagram, because in a
diagram, you have to think more about... While you draw, you can see the mistakes you made in
the text, because things don't match anymore. They can be going in a totally different
direction...it's impossible to draw this when you try to put it down. I think it (a diagram) can
help.” [Int10]. In relation to the presence of mistakes in text or diagrams, the interviewees
considered that mistakes in diagrams lead to greater errors than mistakes in text [Int27]. If a
diagram is not correct, then this is a big error. This may be because information that is covered by
diagrams relates to architecturally-significant aspects of the system: “People take [a diagram] as
the truth sooner than a piece of text, so they might be less critical towards it” [Int12].

The interviewees also considered it necessary to use text to explain diagrams, as a
complement to the graphical information, because diagrams alone are as helpful as text alone:
“a picture is mostly saying more than the text alone, but it's the combination, because you have
to explain what you want, and that's done in text” [.Int10]. Text usually is too detailed in
comparison to diagrams and an overview cannot be extracted [Int9]. Diagrams provide a
global, high level overview, while text explains rationale and provides details [Int24]. This
means that text is considered better for explaining details [Int12]. “Your first thoughts really
show where things are changing and different, and highlight the aspect that you need to
address. That needs an explanation, because it’s not the final picture.” [Int3]. Text is therefore
used to explain/highlight changes, differences from previous designs, and also exceptions in
flows [Int34]. We would also like to highlight that the complementary relation of diagrams and
text could be extrapolated to the context of oral communication, where talking provides extra
information to complement written documentation: “Talking to people can give info about the
history.” [Int12], and “When I explain a diagram, I emphasize changes, differences.” [Int3].

4.5 Tooling

In the SE community’ discussion regarding the adoption and effective use of modelling, the
category of tooling was identified by several researchers (e.g. (Whittle et al. 2013)). In this
section, we summarise our main finding that relates to the tool support for modelling and
documentation discovered through the interviews. These results contribute to answering RQ3.
Several participants in our case study indicated that they like to mix text with UML
diagrams, and also with informal box-and-lines drawings. In reality, virtually all software
(design) documents are indeed a mixture of text and diagrams. Unfortunately, current UML
CASE tools do not provide any support for this (Chaudron and Jolak 2015). From a
complementary angle, word processors do not support, but rather hinder, the updating of
diagrams. We conclude that developers would like tools that allow them to flexibly add text
and custom notation to UML diagrams. Yet even today—20 years after the introduction of
UML - such tools do not exist. The need for tools to support the mixing of text and formal
diagrams and sketches has been supported by other studies (Dekel and Herbsleb 2007).
There are several tools that support the management of different versions of textual
documentation or source code. But in the case of UML diagrams, the support for versioning
is immature, especially in the case of the merging and diffing of models “[when asking about
UML’s disadvantages] that we don’t have real versioning on the UML design has more to do

@ Springer

Empir Software Eng

with the tool that we use; it’s not related to UML. I think it has more to do to the tool.” [Int26],
[Int29]. Sometimes this lack of tooling is substituted by a definition of a human process: “We
have the live structure and development structure. So basically what will happen is, if a
document needs to be updated you take a copy of the live version, make the changes so that it
becomes the development version, put a double tag saying it’s been updated and give the dates
it’s been updated and stuff, and say what's been updated. And once the codes been done and
loaded, it can be moved from there, and then its an algorithm.” [Int20]. When working in this
way, there is a new task which should be done by a team member, which could be done
automatically if there were a tool with which to manage the diagram versioning.

The same lack of tooling applies when the maintainer aims to reuse a model or a part of it. It
would appear that UML tools do not support any notion of modularity of the model [Int8]. As
a result, it becomes difficult to reuse parts of a model.

There is no specific notation support in UML as regards representing design decisions/
design rationale (‘why’s’) or linking these to the actual design. As stated in (Aseniero et al.
2015; Burge et al. 2008; Kruchten et al. 2009), design rationale should be documented to
facilitate understanding and maintenance. The explanations of designs currently need to be
written in a separate document. There are two key problems when following this approach:

» The high likelihood of losing the traceability between model and text, thus leaving the
documentation and model out-of-synch.

* The ‘Dizzying’ of maintainers when they are reading the documentation: “/ hate jumping
between documents; that makes it hard to have an overview of what's what.” [Int12].

In relation to this, a common problem of UML tools also arises; there is poor support as
regards searching in models.

We also found that if people obtain training in modelling, then this is targeted towards
understanding and using the notation, but not towards the use of the tool. Given that the
effective use of UML requires the use of advanced CASE tools, it may be wise to also invest in
training people how to use such tools, showing their main features but also their details. Some
people that regard the tools as intuitive are against this recommendation.

A majority of those surveyed (12 people) state that the use of a tool would help them to
correctly model a system, especially because tools help to create syntactically correct diagrams
[Int14]. Conversely, one interviewee mentioned that using a tool to model a system is a waste
of time; he prefers to create a model on paper/whiteboard and take a picture of it to then attach
this to the corresponding document [Int16]. But it is clearly difficult to maintain a model (keep
it up to date) in this manner.

The needs of the modelling tools which were highlighted by the interviewees of this case
study are summarised in Fig. 13. These needs complement the list of desirable features of a
proper tool for software modelling presented by Forward and Lethbridge (2002), who men-
tioned that it would be useful to have tools with which to track changes in a software system
for the purpose of updating and maintaining its supporting documentation. According to the
results of Forward and Lethbridge (2002), in order to track changes between documents and
source code, the technology must be able to relate:

¢ documents to source code,
¢ source code to documents,

* documents to other documents (in,for example, hyperlinked environments).

@ Springer

Empir Software Eng

SE APPROACH Generate ‘projections’ APPROACH TO UML MODELLING
for different stakeholders 'I
| Easy Searching/Finding
of information —I

*
STAKEHOLDER }—hasb{ GOAL
—— —— guides +— MODELLING PURPOSE

design ideation & .
drives design specification l

r % Version management > — -I
PROCE —
telee and iterative I
Reuse/modularization _|
of models
es

Different types of mix of text and I
r ﬁ informtion diagramming
informal/sketchy and I
rigorous UML use - -
SE-TOOLS | I
" i Cross Referencing/ i
—b{ L Tracing — 4~ —. MODELLINGTOOLS

Fig. 13 Needs of modelling tools detected in the case study

drives

I *

MODELLING PROCESS

dri

2

SE-PRACTICES

j‘i{*

=

3

8
z
e}
<]
m
m
5
Z
[}
[
3
2
=
m
£4
S
<]
m
m
=
Z
I}
)
]
>
s}
=]
el
m

4.6 Context

When able to fit the question into the interviews, we asked about factors that would influence
the use of UML in a project. By sampling the respondents, we found that the larger size and
complexity of a system are factors that increase the likelihood of UML use.

We also detected some details about the influence on the approach to documentation and
modelling of two kinds of maintenance projects which have special requirements. They are the
outsourced maintenance projects or offshored maintenance teams. These subsections contrib-
ute to answering RQ3.

4.6.1 UML and Outsourcing/Offshoring

Several of our interviewees had worked on maintenance projects which involved outsourcing
or offshoring (4 people, to be precise). In those cases, the respondents mentioned a special
importance of documentation (especially documentation containing UML diagrams), based on
the following reasons:

* To improve communication (mentioned by 3 out of 4 maintainers enrolled on outsourced/
offshored projects): “Especially for offshoring teams it is very important that your
documentation is correct.” [Int5].

* To guide the implementation: “They are doing the programming based on that notation
(UML).” [Int5].

* To check the implementation (conformance to design): “UML is your reference of what it
should be, but you have to check if the code that is delivered is in fact aligned with your
UML diagram.” [Int4].

A lack of modelling also influences projects in which multiple parties are involved. This
deficiency leads to a corresponding lack of clarity in specifications, which aim to precisely
define the work that is demanded from a subcontractor, or to describe an agreement on the
scoping of responsibilities between teams.

@ Springer

Empir Software Eng

If we instantiate the element “CONTEXT” of the baseline theory to present the results
obtained about those maintenance projects that have an outsourced team or in which the
maintenance is offshored, the findings on this subsection are summarised in Fig. 14.

4.6.2 Legacy Documentation and Modelling

We investigated the presence of graphical notations on the documentation of legacy
systems. There are a large number of systems that were developed in the pre-UML era.
The documentation of these systems does not contain models. The older the system is,
the fewer diagrams it contains (also driven by the fact that old computer systems did
not support graphical user interfaces). Migrating this documentation to make it com-
pliant with present-day documentation and modelling practices is a huge effort, and
hence a huge investment [Int8]. No automated tooling seems to be available for this,
either because reverse engineering does not produce the right abstraction, layout and
behaviour models, or because there are no reverse engineering tools for old program-
ming languages.

Moreover, for many legacy systems, there is a discussion about when to phase them out
(end-of-life) and replace them with new systems. In such cases, companies are even more
reluctant to invest in the documentation of these systems, while this documentation could, at
the same time, be very valuable as regards building the replacement systems. It should also be
said that in some cases the system is expected to be replaced by a new version soon, which
means that no more investment is made in that legacy system; sometimes the replacement
never occurs, however.

There are occasions during maintenance engineering on legacy systems when developers
create diagrams (e.g. for their own understanding or to plan a solution), but then there are no
clear incentives for using these diagrams to update the documentation. Moreover, if diagrams
are made, they are often in the same style as found in existing documentation, and hence use
box-and-lines or older diagramming notations (dataflow diagrams). What is more, screenshots
may find their way into documentation.

Furthermore, some people working on legacy systems are not trained in new notations like
UML. So they cannot create UML diagrams. In addition, young people (with knowledge in
UML) who are added to legacy projects are constrained to use a notation that all team members
can understand.

If we instantiate the element “CONTEXT” of the baseline theory to present the results
obtained about those maintenance projects of legacy systems, the findings on this subsection
are summarised in Fig. 15.

SE APPROACH APPROACH TO

- _ DOCUMENTATION
)‘/ Improves \

[_ communication |

o/ Importance of | [aude influences
reharacteristic o5 mentation /' because *‘\\ implementation

/" Helptocheck |
|. —p P \

_ implementation /

CONTEXT

N " Outsource/
offshore

Fig. 14 Influence of outsource/offshored maintenance on the documentation approach

@ Springer

Empir Software Eng

SE APPROACH /Low investment m APPROACH TO
— — updating ——-—_———— —— DOCUMENTATION
\documentauon/
/~Incorrect level of)
> \ abstraction |
Not useful

_because Nt supported for _| APPROACH TO

old Ianguages MODELLING

—— —— »{_ RE techniques
Legacy
—_— >

B — Age of system N— ———m

) 4

|charactenst|cs
| influences

_»/Developers training |
_ (UMLornot) /

Fig. 15 Influence of Legacy systems on the modelling approach

4.7 Other Findings

One interviewee had recently started working in an agile team after spending 15 years
following a rigorous waterfall approach in the mainframe area. In that style, documentation
had to be complete and signed off before it was handed over to the next phase. He is new to
UML and agile development: ““... and I say this carefully because I'm new in this department,
but I have noticed there is a lot of fixing smaller errors after implementations too, and this is
definitely different from what I was used to; when it came to the time to implement [..] anything
that was wrong made the alarm bells ring I. [..] Now it seems like it's more or less acceptable
to a certain extent to be less strict on this.... or maybe it’s just the way the e-services are
connected or how different teams are working, so the chances for such defects or errors is
bigger.” [Int35].

Furthermore, during the analysis of the interviews we detected some misperceptions that we
consider worth mentioning:

* Tooling is expensive: We made an inventory of the tools in use at the company: Visio
(15% of people using a modelling tool), Bizz Design Architect (5%) and Sparx Enterprise
Architect (80%), taking into account that one person might use more than one tool. The
prices of licenses for these tools are between 135 and 160€; a total of 150 licenses were
needed in an ICT department of 800-1000 employees. In addition, between 4000 and
6500€ per year was paid as maintenance costs related to the use of the tools. For this size
of an ICT department, the costs for tools are relatively very small compared to the yearly
budget (mostly in manpower) of software maintenance projects. Moreover, the costs of
tooling are fixed costs which can be paid off fast. Tooling costs were not considered an
issue by the management of the ICT department. The perception of tools as an important
cost is also highlighted in the survey performed by (Hutchinson et al. 2014). That survey
focused on MDE, but the main tool used for modelling at the Company, Enterprise
Architect, is a popular tool for MDE.

* An often heard argument in favour of not prioritising the maintenance of documen-
tation is that ‘the business’ stakeholders or clients do not value documentation. While
we agree with this, we believe that the use of modelling and updating of documen-
tation is a technique that is internal to the software developers and that can be used to
produce software faster and of higher quality. The business stakeholder only sees the
shorter development time and higher quality. The same reasoning applies to the
following set of arguments: “Business stakeholder does not understand the diagrams.
Business stakeholder does not see the value. Business stakeholder does not want to
pay for this”. Instead, we would recommend reinforcing the idea that models are for

@ Springer

Empir Software Eng

internal use to run the project more efficiently. This contradiction (business view vs.
development view) may be linked to a short term vs. long term trade-off: not making
documentation at this time may lead to slower and more expensive maintenance on
the same system at some future time

* UML is identified with the RUP-or Waterfall-approach. It is a fact that the RUP is a
methodology that is based mainly on UML, and that Waterfall is usually taught using
examples of a methodology to introduce UML. But the use of UML is not limited to these
two software development methodologies. UML can be successfully integrated into other
software development methodologies, like agile methodologies.

* Model-Based Systems Engineering (MBSE) is a technical approach, and hence not a
solution for team or organisational units that are not working well together. In general,
technological improvements only bear fruit when the team is working well together.

e It was not clear which person/role is responsible for maintaining the documentation. All the
interviewees tended to fix their attention on their colleagues to establish which person was
responsible for that purpose. The person ultimately responsible was the project manager,
but it would appear that he did not state who was responsible for this maintenance task.

Finally, we detected gaps between the interviewees’ opinions that should be highlighted.
There are three issues here:

» There is a gap between the architect and the developer. While architects spend a lot of time
creating precise and detailed diagrams because they believe that developers like to use
diagrams, some developers prefer to work directly with the source code. But the problem is
not based on the notation, because developers also generate their own UML diagrams and
introduce more details. The problem of the architect’s diagrams might be related to the
solution reflected in the diagram (constructed without the final developers’ opinion), or to
the low traceability of the diagram with the source code.

* There is also a problem related to the nature of the diagram. The developers believed that
diagrams should be mainly a representation of the technical layer. But some architects have
a tendency to move towards business orientation (modelling business process and business
concepts). Furthermore, in the business, representatives interpret UML diagrams as tech-
nical pictures.

» There is a big gap too between the source code of a system and its documentation. This is
based on the fact that when time pressure appears in a software (maintenance) project
(which is very common) one of the first things that is sacrificed is the documentation. So,
at some point, the documentation becomes out of date and no longer represents the system,
which means that maintainers can no longer trust the documentation.

5 Recommendations

Using the results of the case study presented in this paper as a basis, we would like to provide
the people involved in modelling and documenting practices with some recommendations.
Some of them are already being considered by the interviewees and they are mentioned as best
practices; others are “wishes”. We summarise those recommendations that we considered to be
most noteworthy in the following list, organised by categories. This list of recommendations
contributes to answering the RQ4.

@ Springer

Empir Software Eng

5.1

5.2

Purpose of Use

Reflect on and define the purpose of using UML [Int24], and also define which diagrams
are going to be used for each purpose.

Involve developers in the software design process [Int4].

Do not throw documentation ‘over the wall’, but have interactive (face-to-face) meetings
where the models are explained and questions can be asked about it. The absence of
questions is more likely to be an indication that people did not look at your diagrams. By
looking at the results produced by ‘consumers’ of the documentation you can detect
whether there are any gaps in the documentation [Int4].

The architect should send the model to the team, particularly in offshored projects. That
team should then review this and provide the architect with feedback to be checked (all
using UML) [Int4].

Processes
Ensure that the documentation gets updated:

Plan for the creation and updating of the documentation [Intl1]. Reserve time in the
project to update documentation [Int11, Int19.

Updating models/and documentation should be part of your ‘definition of done’ [Int24].
Provide clear criteria that define who updates, as well as when and how documentation
should be updated:

“The moment you change the structure, you should update the diagram” [Int26]. Or at
least, maintain the documentation every week/month [Int4].

Define the person/role responsible for maintaining the documentation,

Keep a to-do list (backlog) of documentation updates that need to be performed [Int37].
Establish a way by which all stakeholders of a project can quickly and easily determine
whether a design/document is up-to-date.

Establishing a method of versioning may be part of a solution to this.
With regard to the team size and its relation to documentation:

The use of modelling and documentation becomes more useful in the case of teams of 68
people or more [Int13, Int28].
Documentation is more useful for projects that last longer than 1 year.

Decide on a maintenance/migration policy for models (and documentation) [Int24]. When
migrating legacy software, pay particular attention to when diagrams/models are intro-
duced. Special guidelines may be useful to standardise which diagrams to introduce and, if
making separate additions to existing documentation, where new types of documents are
stored in repositories/file systems. [Int18]. Moreover, legacy documentation may not be
well structured, and a significant effort may therefore be needed to arrange available
information into structures/templates of the target documentation standard [Int18].

@ Springer

Empir Software Eng

Finally, in order to improve quality assurance, we recommend the integration of peer-
reviews for models and documentation in the development process [Int6]

5.3 Training

Invest in training people on how to use the modelling tools, showing not only their main
features but also their details, given that the effective use of UML requires the employment
of advanced CASE tools.

We recommend giving incentives to those software engineers who are not familiar
with these advantages and who do not know any possible positive aspect of a change
towards using modelling in their process, so that they can become aware of the long-
term benefits of using modelling languages (especially UML). Not only this, there is
a need for training in that sense. Software engineers should also be encouraged to
realise the benefits of maintaining the documentation, and/or be trained in taking
advantage of those benefits.

Teach UML separately from methodology (like RUP). Sometimes it is not easy to
apply UML correctly in other methodologies when you learnt the notation as part of
a specific methodology. Moreover, some drawbacks of RUP may be projected onto
the use of UML.

5.4 Standardisation and Governance

There is a need for standardisation, which should focus particularly on providing standards/
guidelines related to the style of modelling and its archiving:

Archiving (organisation of files and naming of files).

If documents are not used for a long time, people forget where to find them [Int18], and
flexible searching mechanisms are therefore important.

Conventions for naming models, classes, methods and attributes should be defined.
Define design conventions: which design patterns/strategies are to be used in which
situation. The scoping of components and layers should also be established. This helps
ensure that similar problems are solved using the same solutions — thus achieving
architectural integrity/uniformity.

Complement the diagrams with personalised legends in order to clarify the non-UML or
non-standard parts of the diagram.

Define the level of detail which should be presented on diagrams. This would help to avoid
an excess of documentation, or a lack of it.

It might be helpful to ensure that producers and consumers of documentation know

each other. This would thus enable them to agree on standardising the aforementioned
issues, and also agree on the relevant information to be documented and the level of
abstraction which is needed in each case. Moreover, it will increase compliance if people
believe they are ‘helping a colleague’ [Int13].

@ Springer

Empir Software Eng

Alignment of vocabulary is also necessary, but this is independent of the use of UML [Int4].
Yet at the same time, because UML is a standardized notation, UML can help in the definition
of the common vocabulary.

Some standardisation is also needed at project and organisational level in order to solve
problems related to the accessibility of documentation, always using the same project struc-
tures (for example in directories and documents naming, typed of files, etc.). It would also be
helpful to use standard templates for documents [Int18].

5.5 Tooling

* Make modelling tools available from the start of the project, in order to obtain their
benefits from early stages in a project.

* Use of tooling for automated checking of UML, e.g. consistent use of patterns, design
principles, naming conventions, or correspondence of source code to design. These may be
applicable for long-lived projects that have a high maturity (in order to increase the
completeness and correctness of the documentation).

» Use tools that support searches in models.

* Finance tooling centrally — not at the project level. This prevents projects from trying to
circumvent modelling by avoiding (generally small) tooling costs.

* Use tools with functionalities related to the traceability between model and text so as not to
leave the documentation and model out-of-synch.

* A very important issue which should be improved is the need to keep diagrams and the
documentation in-synch with source code, representing all the changes made to the system
in them. In order to keep the diagrams updated, we recommend the use of a version
management tool of diagrams.

6 Summary of Results by Research Question

The main objectives of this case study were formulated through research questions, whose
answers are summarised below:

RQ1) What practices are involved in using UML in software maintenance projects?

We found a wide variety of practices of UML modelling across different projects in the case
company. Projects report that the main purposes of using UML are for ‘communication” and
‘getting an overview’. The purposes mentioned next most frequently are ‘creating a design’
and ‘own understanding’. This is in line with other surveys (Petre 2013) about UML and
highlights the role of UML as a ‘boundary object’ —i.e. as a representation of project
knowledge used by different stakeholders in different ways. We confirm previous studies
which have found that UML modelling is used in a quite loose manner. In our study, we
explain some factors that drive the use of UML to a less formal level, which are summarised
below:

* Models in project documentation should follow the ‘least common denominator’; i.e. they
should be understandable to all audiences of the documentation — also those that have no

formal training in UML (such as the project manager or stakeholders from business units).

@ Springer

Empir Software Eng

* Software modellers are conservative as regards the use of detailed features of UML
syntax, which is prone to change over versions of the UML standard. They prefer to
be a little more high-level rather than to need to update the models when new
versions of the UML standard appear.

* The main purpose of UML models is communication, and in particular communi-
cation of an ‘overview of the system’ and of ‘design intent’ — rather than ‘design
blueprint’. These considerations drive models to focus on key parts of the design.
As a consequence, these overview-diagrams intentionally abstract from details.
Moreover, in order to convey knowledge/ideas in the best way possible, producers
of documentation want to have freedom in which graphical elements to use and
freedom to combine freeform text with diagrams. Current UML tools provide very
poor support for these combinations.

Overall, because there are multiple stakeholders that use UML models for different
purposes, no single perfect UML model exists that is ideal for all. Instead, modelling
tools should start catering for different tailorable views for different stakeholders.
With modern software technology, it should be feasible to cater for diverse needs, but
the current generation of UML modelling tools does not yet support this.

Some interviewees have asked for executable models or models that support
animation. Their claim is that these would be even better for understanding, commu-
nication and improving pre-implementation design, but this approach would require a
higher level of completeness and detail, and thus incur greater costs. Moreover, it
would be more difficult to maintain these models synchronized with the code. In
short, the costs-benefits trade-off for executable modelling is unclear.

By and large, reverse engineering is not considered a viable alternative for
extracting documentation or models from source code. The benefits claimed for
reverse engineering include: i) one does not need to create documentation because
one can generate it (i.e. savings of effort), and ii) documentation is always up to date.
With regard to argument i): there is ample experience that tells us that reverse
engineering cannot be fully automated. Even if some steps can be automated (e.g.
identifying all classes and their relations), a lot of manual effort is needed to recover
key concepts and abstractions. Furthermore, for some concepts (e.g. sequence dia-
grams) it is impractical to reconstruct them from the source code because their
implementation is scattered across many places in the source code. Moreover, the
problems of reverse engineering grow with the size of systems. We therefore found no
evidence that savings in effort or development time are made by using reverse
engineering models.

Seventy percent of the developers interviewed prefer FD models to RE ones. The
situation in which the use of reverse engineering may be practical is that in which
programmers need to understand a relatively small piece of the source code that they
are working with. In addition to the problem of reverse engineering design models,
other concepts are virtually impossible to extract/recover at all from the source code:
business processes, design principles, design rationale. Key aspects of such knowl-
edge can thus be documented better.

Finally, there is a negative impact on knowledge sharing: when using reverse
engineering to recreate a design model from the implementation (i.e. after the design
and programming has been done), this may result in the omission of discussions about

@ Springer

Empir Software Eng

the design that would otherwise increase the shared understanding of the design of the
systems amongst the developers- i.e. risks of miscommunication is prolonged for a
longer period in a project.

RQ2) What are the costs and benefits of using UML in software maintenance
projects?

The main cost-factors mentioned for the use of UML actually relate to the change of
existing work practices towards using UML, rather than to the actual use of UML. These
factors include: cost of training, cost of migrating documentation, and cost of changing
processes.

When looking at the actual cost of using UML, the factor mentioned most is that of
tooling. With regard to this factor, the quantitative data we elicited at the company
contradicts that tooling is a major cost — e.g. when compared to the costs of training. The
costs of tools is therefore perceived to be a high cost factor for large companies, but this
is not necessarily so.

It is also interesting to note that there is a radical difference with industries like integrated-
circuit (IC) design where design tools can cost up to US $100,000 per year. We think a key
difference here is in the purpose: in IC-design the model is a detailed blueprint of the actual IC
(hence an engineering construct), whereas in software design, the main purpose of the model is
communication. For software modelling, the cost of tooling is perceived as a hurdle, while it is
not really so much so in practice.

One factor that complicates the business-case for using modelling is the fact that the
benefits are difficult to quantify (they are ‘intangible’): no company keeps a record of
miscommunication, poor early design choices, out-of-date or unavailable documentation and
their associated costs. One of the reasons why such benefits are hard to quantify is that
modelling is often one of many ways (employed in conjunction with others) of achieving a
particular goal. Faults cannot therefore be traced back to a single cause.

On the benefit side, software engineers from our case study indicate that the use of UML
modelling contributes the following benefits:

1) Process benefits:

* improved communication / fewer misunderstandings — especially across organisational
and geographic boundaries (global software development and outsourcing).

* It helps to improve the design before implementation (through increased ease of peer-
reviewing).

» It prevents knowledge evaporation.

* It makes diagnosing of problems easier (especially behaviour models).

2) Product quality benefits

* 89% of the engineers believe that the use of UML improves the quality of the ultimate
software product. More specific findings mentioned in support of this are that UML
modelling:

* Ttincreases the understanding of the system to be built.

* It enables them to monitor whether an implementation conforms to a design.

@ Springer

Empir Software Eng

In general, structural models like class diagrams and component diagrams are not believed
to make strong contributions to preventing programming defects in the source code, but they
are thought to have a positive impact on the structure of the system (modularity, layering).
Modelling therefore makes a better contribution to maintaining a good structure of the system.
And this is known to benefit the maintainability of systems. What is more, behavioural models
(sequence diagrams) share most of the generic benefits of modelling, but also aid in the
diagnosis of errors.

While all of these are mentioned as benefits, there is no empirical evidence regarding the
magnitude of their impact on a project for any of them.

RQ3) What are the hurdles when maintaining documentation, and UML models as
part of it?

Here we summarise the conclusions obtained as regards both maintaining documentation
and using UML as part of the documentation.

6.1 Maintaining Documentation

A common driver for skipping both creating and updating documentation is time-pressure.
Unfortunately projects always have time pressure and there is a lack of evidence to support the
benefits of having documentation. Moreover, there is currently a normative challenge in that
people (mis)interpret the guidelines of the Agile Manifesto (‘working software over compre-
hensive documentation’) in such a way that only working source code is important, and no
documentation is needed (‘the source code is the documentation”).

Other practical hurdles in our case were: the fact that various duplicates of documentation
were stored in different archiving systems. This complicated the finding of documentation, as
well as the verification of it being up-to-date.

A practical hurdle is that there is often no clear definition of who is responsible for updating
documentation. Who should update and when to do so, is often not formally embedded in the
development process and there is no quality assurance on updates.

Another hurdle found is related to the misalignment of the incentives for maintaining the
documentation:

1) Knowledgeable/experienced developers are required to create documentation, but these
are not the people that benefit from it. It is the newcomers and inexperience project
members that benefit from the documentation.

2) From a project management perspective, there is also a short-term versus a long-term
trade-off. Investing in a good design may lead to easier/cheaper maintenance in the long
run. Incentives here are often also misaligned. This could be because the party/part of the
organisation that pays for development is often not the same as that which pays for
maintenance.

3) The third misalignment is that between those who produce documentation and those who
consume documentation. Generally speaking, documentation is created by engineers who
have experience with the system they are documenting. This is necessary because they
know what the key knowledge about the system that needs to be documented is. But
experienced developers do not need the documentation themselves. They produce this for
engineers that are relative ‘novices’ in the system.

@ Springer

Empir Software Eng

6.2 Using UML in documentation

One hurdle as regards using UML was mentioned in response to the first research question: it
is the hurdle of introducing/migrating to a practice of UML modelling.

Some people/projects that are modelling find it difficult to find a proper level of abstraction
and level of detail for using UML models in their documentation. This can be addressed by
having company standards and examples that prescribe this. Our study also shows that
different stakeholders have different preferences for viewing — including different LoD — the
documentation of a project.

Another hurdle is the difficulty of keeping UML and implementation synchronized. UML
models in documents are often represented at a medium to high level of abstraction, thus
leaving out implementation level information. This choice seems wise from the perspective that
this requires few updates to the UML models if minor changes are made to the source code. The
downsides are that: i) programmers cannot find detailed guidance in the UML models, and ii) it
is unclear which changes to the source code need to be reflected in the UML models.

Given that UML models are primarily used for communication, people not trained in
software engineering find the UML notation difficult to understand. Any team will need to
find a ‘lowest common denominator’ for the notation that they use.

RQ4) What are best practices when using diagramming and modelling in
documentation?

In our study, the detailed recommendations about best practices can be found in Section 7,
but we highlight the key practices here:

* PURPOSE OF USE: Find out which stakeholders in a project use UML/documentation
and for what purpose. Then have both the parties that produce documentation and those
that consume documentation agree on the level of abstraction and level of detail of UML/
documentation.

* PROCESS: Clearly define the responsibility for updating/maintaining the (UML) docu-
mentation. It should be clear who needs to do this, when this needs to be done, and how.
Such practices can be embedded in modern agile approaches —for example, by including
updated documentation in the ‘definition of done’.

* TOOLING: The archiving of documentation and models should be handled such that it
becomes 1) easy to find, ii) easy to search within, iii) easy to see if it is up-to-date, and iv)
easy to navigate between documents.

* TRAINING: incentivise and/or train in the long term benefits of using modelling lan-
guages (especially UML) in the case of those software engineers who are not familiar with
these benefits and who do not know any possible benefit of a change towards using
modelling in their process. It would also be important to train maintainers on how to use
modelling/CASE tools.

* STANDARISATION AND GOVERNANCE: Tooling, training and standardization
should be managed at a central level so as to achieve uniform practices across projects
and to avoid ineffective attempts at cost savings. Moreover, processes and incentives that
ensure that the processes and standards are actually followed need to be instated. Organi-
sations should also create a culture that has a realistic understanding of the value of models
and documentation and which thus neither overestimates nor underestimates its value.

@ Springer

Empir Software Eng

7 Threats to Validity

We must consider certain issues which may threaten the validity of the case study (Runeson
et al. 2012). In this section, we therefore discuss the threats to the validity of this study. These
threats to validity will be presented in the order of their importance (Wohlin et al. 1999):
internal validity, external validity, construct validity, and conclusion validity.

e Internal validity: The main threat to the internal validity of this study concerns our ability
to control influences from other factors beyond those which have been accounted for in
this study. For example, the age of the interviewees, the relationship of the interviewees
with their team members, or their motivation, might be influential factors as regards being
for, or against, the use of UML. Also the consideration of the term UML as a synonym of
Rational Unified Process or even Object Orientation might be an internal threat to validity
to this study.

* External validity: this concerns limitations as regards generalising the results of a study to
a broader industrial practice. The sample of the case study and interviewees might be a
threat to the validity of this study, although the sampling process was as randomised as
possible. We acknowledge the fact that using only one case study may limit the
generalisability of the results of this study. However, we believe that reporting these early
findings is necessary, as it serves as an encouragement for other researchers to replicate our
study using different case studies. The generalisation of the results might be extended to
cases which have common characteristics. On the other hand, an interview provides
“spontaneous recall” of an answer if it lists a concrete example/instance on an open
question: “Q: For example, which diagrams do you use?” “A: Class diagrams.” If in a
subsequent question, we ask a closed question: “Q: Do you also use sequence diagrams?”
“A: sometimes, but not always.” Then this illustrates that the person actually does also use
some other diagram, but needs to be triggered/queued to say so. In interviews it is not
always possible to get the interviewee to recall the exact information that is relevant to the
question/research. From this perspective, an interview study should not be considered to be
complete or accurate in a quantitative sense. Nevertheless, quantitative analyses sometimes
provide clear indications of trends.

* Construct validity: in the data collection multiple sources of evidence were used. Also the
transcript of interviews and observations were sent back to the interviewees to enable
correction of raw data. In addition, analyses were presented to them and to the internal
research supervisor, in order to maintain their trust in the research. The validity of the
developed theory would need to be tested in other case studies.

* Conclusion validity or reliability: this relates to the ability to draw a correct conclusion
from a study. The chain of evidence from the interviews and documentation analysed
through to the synthesized evidence was maintained using a word-for-word transcription.
This analysis took a long time to carry out, but this was due in part to our desire to ensure
that we did not make mistakes in the interpretation while the analysis was being under-
taken. We therefore asked the interviewees to give feedback to the researchers on the
transcripts of the interviews. This practice is known as ‘member checking,” and it was used
continuously to obtain feedback on both the transcripts and the analyses. Tools were also
used during the analysis of the data. Furthermore, the individual coding performed by each
researcher was discussed by them, so that they could verify and reach an agreement on
them. In particular, we used triangulation in order to reduce bias. Triangulation (Robson

@ Springer

Empir Software Eng

2011) refers to having multiple sources for the study information. In this study, this was
attained in three different ways, which further increases the validity of the study. A
summary is provided below:

— Data triangulation: Multiple data sources were used in the study, such as interviews with
people who had different roles, experience in ICT, etc.

— Investigator triangulation: Interviews were performed by one researcher, but their analysis
was done by two researchers together. Important analysis steps were performed by two
researchers independently.

— Methodological triangulation: Multiple methods were use; both qualitative interviews and
qualitative archival analysis were employed, along with a few quantitative measures to
investigate relevant metrics.

8 Conclusions

In this paper, we have analysed the practices and use of software modelling for software
maintenance in industry. We pay particular attention to how UML is being used as part of
the documentation available in a maintenance project. This analysis has been carried out
by means of a case study involving 31 interviewees playing different roles in a variety of
projects in a software department at a multinational company. The qualitative data
obtained is presented in conjunction with a theory about how some elements from a
common SE approach (like goals, process, practice and tools) influence the documenta-
tion or modelling approaches.

The majority of the interviewees consider that diagrams are a helpful tool in software
maintenance. The most commonly-mentioned purpose of use of diagramming software
designs is ‘overview’, especially of spatial structures with many components and their
mutual relations. Moreover, a graphical notation is an aid to achieving more uniformity
of documentation in comparison to textual documentation. It was also noted that dia-
grams are easy to compare (to other diagrams). Engineers find it easy to judge the
relevance of diagrams for their information need, and can therefore quickly glance over
diagrams in search of certain pieces of information.

We also detected that the richness of syntactical elements in a notation (like UML)
may lead to discussions that do not add any value (‘which type of rectangle to use’). This
is hypothesised on the basis of discussions about colours in layout that were perceived to
be a waste of time.

Moreover, some respondents believe that UML training is a one-time investment (training
in UML is needed only once). Other interviewees, however, believe that it is important to have
refresher courses in UML, especially for people that use UML occasionally (at a low
frequency; several times per year). This would keep them informed about the latest develop-
ments in the notation. This instruction could also be triggered by publications of a new version
of the UML standard or a significant new release of the tool.

It is probably for this reason that software modellers are conservative in using detailed
features of UML syntax that is prone to change in versions of the UML standard. They
prefer to be a little more high level rather than needing to update the models when new
versions of the UML standard appear. A list of best practices was also extracted from this
case study; some of them are based on practices already applied by the interviewees and

@ Springer

Empir Software Eng

considered by them as recommendations to people involved in software maintenance
projects (or in software modelling), and other are their “wishes”. We have classified this
list of best practices in five categories: tooling, training, purpose of use, process and
standardisation and governance.

Overall, the engineers at the company have a positive attitude towards the use of graphical
modelling like UML in software maintenance. Moreover, the discussion should not be framed
as ‘black-or-white’, but as a search for a practical way in which to capture and share
knowledge about a system, which will inevitably be a combination of text and diagrams.
While quantitative evidence on the pros and cons remains elusive, we believe that the views of
the engineers in this company represent a large body of experience.

9 Future Work

Several recent empirical studies into the use of modelling have claimed to be representative of
the community of professional software engineers. Our case study highlights that there are
many different types of roles (all of them software professionals) in large software develop-
ment and maintenance projects. However, the involvement of different roles with modelling
varies widely. Hence, for future studies, we recommend that researchers pay special attention
during the selection of participants in their studies (be they interviews or surveys or experi-
ments), and also in the analysis of their data split, in an attempt to see whether patterns emerge
if participants are grouped based on their role. It is not sufficiently detailed to refer to general
roles such as ‘software engineers’ or ‘software professionals’.

Possible future directions for our current research are related to the presentation of certain
topics which were detected as candidates during the current research, such as:

* Does (just enough) up-front design indeed prevent downstream repair, and to what degree?

* One big question seems undecided: Is the updating of models/documentation time-
consuming or not? Or, in other words, how much time do software architects/designers
spend on creating and updating models?

* There is a fundamental problem as regards dividing the documentation in a proper way for
the purpose of presenting different views to different stakeholders. It might be interesting
to research what the proper views for this purpose are.

» Several participants reported that the benefits of creating designs/models are hard to
quantify. This area needs new creative approaches in order to attain more insights into
this matter.

Our study also identified several problematic areas in current tool support for modelling
during software development. There is ongoing research that addresses some of these issues,
such as merging and differencing, versioning of models, etc. One issue that stands out is the
lack of support for the flexible mixing of diagrams and text. Another issue is the need to
abstract models from source code at different levels of abstraction.

Acknowledgements We are very grateful to the company for dedicating time to us and opening up to us in
interviews.

This research has been funded by the SEQUOIA project (Ministerio de Economia y Competitividad), and by
the Fondo Europeo de Desarrollo Regional FEDER, TIN2012-37493-C03-01.

@ Springer

Empir Software Eng

Appendix 1

The following lines present the questionnaire used to carry out the interviews. The question-
naire is divided into 3 blocks:

10.

I1.
12.

13.
14.

15.

16.

Common questions for all the interviewees

What is your background and your experience?

What is your role, and what are your responsibilities within the project?

Which kind of documentation do you use to perform maintenance tasks: diagrams, code,
textual information, etc.?

How do you use documentation/diagrams?

How often do you use the documentation?

Block of questions for those interviewees who use UML diagrams

Why do you use UML diagrams? (Give reasons) / For what purpose is UML modelling
used?
For maintenance, do you manage (look up/ create/ modify) diagrams in a modelling tool
(i.e. Enterprise Architect, Visio, etc.)? Or do you look them up in the documentation (i.e.
word documents, pictures, etc.)? Did you receive any training about the tool?
Which diagrams do you consider to be most frequently used to perform the maintenance
tasks? Which diagrams do you consider to be the most useful for performing the
maintenance tasks?
Do diagrams help in solving defects?

IF the answer is YES

9.1. How do they do so?
When you maintain the code, do you also maintain the diagrams?
IF the answer is YES

10.1. How much time does it take?
10.2. Who maintains the diagrams? (The same person who maintains the code or a
different one?)
IF the answer is NO

10.3. Why do you not maintain the diagrams? Are the diagrams correct but not the
code? Or is there another reason?

Do you like UML?
Do you think using UML has an impact on the time of the project? Do you think using
UML has an impact on the quality of the final product? How?
What cost factors are related to using UML modelling in your work (training, tooling, etc.)?
Do you think there is another way in which to improve your work other than UML (i.e.
another kind of diagram, etc.)?
Did you receive any training about UML at the Company? And before coming to the
Company?
Do you think that the use of modelling allows errors to become incorporated?

@ Springer

Empir Software Eng

17. Where does the diagram originate from and go to? (chain of use)
18. Do you reuse documentation from previous projects?

Block of questions for those interviewees who do not use UML diagrams

19. Do you use any kind of diagram to maintain the system and to communicate between
team members?
20. Would you like UML diagrams to be available?
If the answer is YES

20.1. How do you think UML would help you to maintain the system?

20.2. What benefits do you think UML diagrams could contribute to your work?

20.3. Do you think UML helps to improve the quality of the final product? How?

20.4. What cost factors are related to using UML modelling in a project?

20.5. Do you think the size of the system influences the way in which UML is used (or
not used) on a project?

20.6. Do you think the size of the team influences the way in which UML is used (or not
used) on a project?

Appendix 2
Interviewee ICT Context Educational Educational Gender Role
experience field level
[Int1] very high common n.a. school male project architect
project
[Int2] medium na. computer master’s male project manager
sciences degree
[Int3] very high n.a. electronics and bachelor’s male project architect
mathematics degree
[Int4] n.a. n.a. computer bachelor’s male project architect
sciences degree
[Int5] medium na. computer bachelor’s male information
sciences degree analyst
[Int6] low n.a. n.a. n.a. male technical lead
[Int8] very high na. navy na. male test engineer
[Int9] high outsourcing n.a. n.a. male delivery lead
[Int10] very high Embedded n.a. n.a. male programmer /
real-time application
programming developer
[Int11] very high na. computer bachelor’s female programmer /
sciences degree application
developer
[Int12] low migration art high school male test coordinator
[Int13] very high n.a. n.a. school male technical lead
[Int14] high n.a. computer n.a. male information
sciences analyst
[Int16] n.a. web/mobile electronics n.a. male SCRUM master
projects
(SCRUM)

@ Springer

Empir Software Eng

Interviewee ICT Context Educational Educational Gender Role
experi- field level
ence
[Int18] very high n.a chemistry bachelor’s male system analyst
and physics degree
[Int19] high common computer master’s female programmer /
project sciences degree application
developer
[Int20] very high n.a. Business and Finances bachelor’s male programmer /
degree application
developer
[Int21] n.a. n.a computer master’s male analyst
sciences degree developer
[Int23] very high n.a. n.a. high school female analyst
developer
[Int24] very high web/mobile n.a. n.a. male project architect
projects
(SCRUM)
[Int25] very high n.a. n.a bachelor’s male programmer /
degree application
developer
[Int26] very high common computer master’s male project architect
project sciences degree
[Int27] very high mainframe n.a. HBO male programmer /
application
developer
[Int28] very high old legacy psychology HBO male programmer /
system application
developer
[Int29] very high na. n.a. n.a. male team leader
[Int31] high common computer bachelor’s male deployer
project sciences degree
[Int32] very high common computer HBO male programmer /
project sciences application
developer
[Int33] very high web and mobile n.a. n.a. male programmer /
projects application
(SCRUM) developer
[Int35] very high change from n.a n.a male information
mainframe analyst
to agile
[Int36] very high old legacy computer n.a male program analyst
system sciences
[Int37] high outsourcing n.a. n.a male project manager
References

Anda B, Hansen K, Gullesen I, Thorsen HK (2006) Experiences from introducing UML-based development in a
large safety-critical project. Empir Softw Eng 11:555-581
Arisholm E, Briand LC, Hove SE, Labiche Y (2006) The impact of UML documentation on software

maintenance: an experimental evaluation. IEEE Trans Softw Eng 32:365-381

Aseniero BA, Wun T, Ledo D, Ruhe G, Tang A, Carpendale S (2015) STRATOS: using visualization
to support decisions in strategic software release planning. Presented at the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI’2015). ACM, New York, NY, USA,

pp 1479-1488

@ Springer

Empir Software Eng

Basili V, Weiss D (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng
10:728-738

Blaha MR, Rumbaugh JR (2004) Object-oriented modeling and design with UML, 2nd edn. Pearson, Upper
Saddle River

Bruegge B, Dutoit AH (2010) Object-oriented software engineering: using UML, patterns, and Java. Prentice
Hall, Boston

Burge JE, Carroll JM, McCall R, Mistrik I (2008) Rationale-based software engineering, 1st edn. Springer-
Verlag, Berlin

Chaudron M, Jolak R (2015) A vision on a new generation of software design environments. In: Chalmers
Publication Library (CPL). Presented at the First International Workshop on Human Factors in Modeling
(HuFaMo’15). CEUR-WS, pp 11-16

Cook TD, Shadish WR Jr, Campbell DT (2001) Experimental and quasi-experimental designs for generalized
causal inference, international edition. Cengage Learning, Inc, Boston

Cruzes DS, Dyba T, Runeson P, Host M (2011) Case studies synthesis: brief experience and challenges for the
future. Presented at the 2011 International Symposium on Empirical Software Engineering and
Measurement (ESEM’11), pp. 343-346

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. Presented at the 23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information (SIGDOC’05). ACM, New York, NY, USA, pp 68-75

Dekel U, Herbsleb JD (2007) Notation And Representation In Collaborative Object-Oriented Design: An
Observational Study. Presented at the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications (OOPSLA’07). ACM, New York, NY, USA, pp 261-280

Dobing B, Parsons J (2006) How UML is used? Commun ACM 49:109-113

Dzidek WIJ, Arisholm E, Briand LC (2008) A realistic empirical evaluation of the costs and benefits of UML in
software maintenance. IEEE Trans Softw Eng 34:407-432

Fernandez-Saez AM, Genero M, Chaudron MRV (2013) Empirical studies concerning the maintenance of UML
diagrams and their use in the maintenance of code: a systematic mapping study. Inf Softw Technol 55:1119—
1142

Fernandez-Séaez A, Genero M, Caivano D, Chaudron MV (2014) Does the level of detail of UML diagrams affect
the maintainability of source code?: a family of experiments. Empir Softw Eng 12:1-48

Fernandez-Saecz AM, Caivano D, Genero M, Chaudron MRV (2015a) On the use of UML documentation in
software maintenance: Results from a survey in industry. Presented at the 18th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems (MODELS’15), Ottawa, ON, Canada, pp
292-301

Fernandez-Saez AM, Genero M, Chaudron MRV, Caivano D, Ramos I (2015b) Are forward designed or reverse-
engineered UML diagrams more helpful for code maintenance?: a family of experiments. Inf Softw Technol
57:644-663

Forward A, Lethbridge TC (2002) The relevance of software documentation, tools and technologies: a survey.
Presented at the 2002 ACM Symposium on Document Engineering (DocEng’02). ACM, New York, NY,
USA, pp 26-33

Garousi G, Garousi V, Moussavi M, Ruhe G, Smith B (2013) Evaluating usage and quality of technical software
documentation: an empirical study. Presented at the 17th International Conference on Evaluation and
Assessment in Software Engineering (EASE’13), ACM, pp 24-35

Garousi G, Garousi-Yusifoglu V, Ruhe G, Zhi J, Moussavi M, Smith B (2015) Usage and usefulness of technical
software documentation: an industrial case study. Inf Softw Technol 57:664-682

Glaser BG, Strauss AL (1967) The discovery of grounded theory: strategies for qualitative research, 8th edn.
Transaction Publishers, Chicago

Host M, Runeson P (2007) Checklists for software engineering case study research. Presented at the First
International Symposium on Empirical Software Engineering and Measurement (ESEM’07), pp 479481

Hutchinson J, Whittle J, Rouncefield M (2014) Model-driven engineering practices in industry: social, organi-
zational and managerial factors that lead to success or failure. Sci Comput Program 89:144-161

ISO/IEC (1999) ISO/IEC 14764-1999: Software Engineering Maintenance

Jacobson I, Booch G, Rumbaugh J (1999) The unified software development process. Addison-Wesley Longman
Publishing Co., Inc., Boston

Johnson P, Ekstedt M, Jacobson I (2012) Where’s the theory for software engineering? IEEE Softw 29:96-96

Kruchten P, Capilla R, Duefias JC (2009) The decision view’s role in software architecture practice. IEEE Softw
26:36-42

Leotta M, Ricca F, Antoniol G, Garousi V, Zhi J, Ruhe G (2013) A pilot experiment to quantify the effect of
documentation accuracy on maintenance tasks. Presented at the 29th IEEE International Conference on
Software Maintenance (ICSM’13), pp 428-431

@ Springer

Empir Software Eng

Liebel G, Marko N, Tichy M, Leitner A, Hansson J (2018) Model-based engineering in the embedded systems
domain: an industrial survey on the state-of-practice. Softw Syst Model 17(1):91-113

Locke K (2001) Grounded theory in management research, 1st edn. SAGE Publications Ltd, London

Lutters WG, Seaman CB (2007) Revealing actual documentation usage in software maintenance through war
stories. Inf Softw Technol Qual Softw Eng Res 49:576-587

McNamara C (1999) General guidelines for conducting interviews (Technical report). Authenticity Consulting,
LLC, Minneapolis

Mellegard N, Staron M (2010) Characterizing model usage in embedded software engineering: a case study.
Presented at the Fourth European Conference on Software Architecture: Companion Volume (ECSA’10).
ACM, New York, NY, USA, pp 245-252

Nugroho A, Chaudron MRV (2008) A survey into the rigor of UML use and its perceived impact on quality and
productivity. Presented at the Second ACM-IEEE international symposium on Empirical software engineer-
ing and measurement (ESEM’08), ACM, pp 90-99

Petre M (2013) UML in practice. Presented at the 2013 International Conference on Software Engineering
(ICSE’2013), San Francisco, CA, USA, pp 722-731

Petre M, Blackwell AF (1999) Mental imagery in program design and visual programming. Int J] Human-Comput
Stud 51:7-30

Pigoski TM (2001) Chapter 6: software maintenance. In: SWEBOK: A Project of the Software Engineering
Coordination Committee (Trial Version 1.00). IEEE Computer Society Press, Los Alamitos, pp 6-1-6-15

Pressman RS (2005) Software engineering: a practitioners approach, 7th edn. McGraw Hill

Punch KF (2005) Introduction to social research, second edition: quantitative and qualitative approaches, 2nd
edn. SAGE Publications Ltd, London

Ricca F, Leotta M, Reggio G, Tiso A, Guerrini G, Torchiano M (2012) Using UniMod for maintenance tasks: an
experimental assessment in the context of model driven development. Presented at the 4th International
Workshop on Modeling in Software Engineering (MiSE’12), pp 77-83

Richards L (1999) Using NVIVO in qualitative research. SAGE Publications Ltd, London

Robson C (2011) Real world research, 3rd Revised edition. Wiley, Oxford

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software engineering.
Empir Softw Eng 14:131-164

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines and
examples. Wiley Publishing, Hoboken

Scanniello G, Gravino C, Tortora G (2010) Investigating the role of UML in the software modeling and
maintenance - a preliminary industrial survey. Presented at the 12th International Conference on
Enterprise Information Systems (ICEIS’10), Funchal, Madeira, Portugal, pp 141148

Scanniello G, Gravino C, Tortora G (2012) Does the combined use of class and sequence diagrams improve the
source code comprehension? Results from a Controlled Experiment. Presented at the 2nd Experiences and
Empirical Studies in Software Modelling Workshop (EESSMoD’12)

Scanniello G, Gravino C, Genero M, Cruz-Lemus JA, Tortora G (2014) On the impact of UML analysis models
on source-code comprehensibility and modifiability. ACM Trans Softw Eng Methodol 23:1-26

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng 25:
557-572

Sjeberg DIK, Dybéd T, Anda BCD, Hannay JE (2008) Building theories in software engineering, in: guide to
advanced empirical software engineering. Springer, London, pp 312-336

Sony (2010) Sony® Digital Voice Editor Version 3.3.01 [WWW Document]. URL http://esupport.sony.
com/perl/swu-download.pl?SMB=YES®ion_id=2&template id=2&upd_id=5529. Accessed 5 Apr 2013

Strauss AC, Corbin J (1990) Basics of qualitative research: grounded theory procedures and techniques, 2nd edn.
SAGE Publications, Inc., Thousand Oaks

Swanson EB (1976) The dimensions of maintenance. Presented at the 2nd international conference on Software
engineering (ICSE’76), IEEE Computer Society Press, San Francisco, California, United States, pp 492-497

Torchiano M, Tomassetti F, Ricca F, Tiso A, Reggio G (2013) Relevance, benefits, and problems of software
modelling and model driven techniques—A survey in the Italian industry. J Syst Softw 86:2110-2126

Whittle J, Hutchinson J, Rouncefield M, Burden H, Heldal R (2013) Industrial Adoption of Model-Driven
Engineering: Are the Tools Really the Problem? In: Moreira A, Schatz B, Gray J, Vallecillo A, Clarke P (eds)
Model-driven engineering languages and systems, lecture notes in computer science. Springer, Berlin, pp 1-17

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci Comput Program
101:136-152

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A (1999) Experimentation in software
engineering: an introduction. Kluwer Academic Publishers, Boston

Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects?. Presented at the 2012
28th IEEE International Conference on Software Maintenance (ICSM’12), pp 306-315

Yin RK (2002) Case study research: design and methods, 3rd edn. SAGE Publications, Inc., Thousand Oaks

@ Springer

http://esupport.sony.com/perl/swu-download.pl?SMB=YES®ion_id=2&template_id=2&upd_id=5529
http://esupport.sony.com/perl/swu-download.pl?SMB=YES®ion_id=2&template_id=2&upd_id=5529

Empir Software Eng

Ana M. Fernandez-Saez has a MSc in Computer Science from the University of Castilla-La Mancha, Ciudad Real,
Spain (2009). She is member of the Alarcos research group and Ph.D student at the Department of Technologies and
Information Systems at the same university. Part of her PhD research is done at Leiden University, Leiden, The
Netherlands. Her research interests include: UML model quality, quality in model-driven development, software
measures and empirical software engineering. Her contact email is: anamaria.fernandez.saez@ gmail.com.

Michel R.V. Chaudron is full professor and head of the Software Engineering Division at the joint department of
Computer Science and Engineering of Chalmers and Gothenborg University in Sweden. Prior to that he worked at
Leiden University and TU Eindhoven in The Netherlands. From 1997 to 1999, he worked with IT-consultancy CMG
(now CG]) in the field of Transport Telematics. He obtained his M.Sc. and Ph.D. degrees from Leiden University,
The Netherlands. Prof. Chaudron’s research interests are in software architecture, component-based software
engineering, software design and software modeling and model-driven software development with a special interest
in empirical studies into the effectiveness of modeling. He has published more than 100 peer reviewed papers. He has
been active member of several conference in these areas including: CBSE, MODELS, Euromicro-SEAA, ASE, and
ESEM.

@ Springer

Empir Software Eng

Marcela Genero is Associate Professor at the Department of Technologies and Information Systems at the
University of Castilla-La Mancha, Ciudad Real, Spain. Accredited by ANECA as Full Professor since January of
2012. She received her MSc degree in Computer Science in the Department of Computer Science of the University of
South, Argentine in 1989, and her PhD at the University of Castilla-La Mancha, Ciudad Real, Spain in 2002. Her
research focuses on the following areas: empirical software engineering, software quality, quality models, conceptual
models quality, software modelling effectiveness, gamification in software engineering, etc.). Marcela Genero has
published more than 100 peer review papers in prestigious journals (DKE, ESEM, ACM TOSEM, IST, JSS,
SOSYM, etc.) and conferences (CAISE, E/R, MODELS, ISESE, METRICS, ESEM, EASE, etc.). She co-edited
the books titled “Data and Information Quality” (Kluwer, 2001) and “Metrics for Software Conceptual Models”
(Imperial College, 2005), among others. She participated in several program committees (CAISE 2005, METRICS,
2004-2006, ICSM 2007, ESEM 2007-2014, EASE 2008-2014, etc.) and as reviewer of several journals as well
(EMSE, IEEE TSE, SOSYM, JSS, IST, etc.). She has organised several conferences, workshops and tutorials on
empirical studies in software modelling, evidence-based software engineering, quality in conceptual modelling, etc.
She has managed several research projects which involved universities and private companies as partners, related to
topics within the research areas previously mentioned. She is member of the International Software Engineering
Research Network (ISERN) since 2004.

@ Springer

	An industrial case study on the use of UML in software maintenance and its perceived benefits and hurdles
	Abstract
	Introduction
	Related Work
	Research Method
	Goal and Research Questions
	Case and Subject Selection
	Data Collection Procedures
	Case Study Execution and Analysis Procedure

	Results
	Background
	Goal
	Purpose of Use of UML
	Perceived Cost Factors of Modelling

	Process
	Relation Between Development Process and Modelling
	Documentation

	Practice or Style
	Diagramming Practices: (standardized) UML or Freeform
	Influence of UML Usage on Quality of Software
	Standardisation
	Use of Reverse Engineering
	UML Versus other Graphical Notations
	Comparing Text and Diagrams

	Tooling
	Context
	UML and Outsourcing/Offshoring
	Legacy Documentation and Modelling

	Other Findings

	Recommendations
	Purpose of Use
	Processes
	Training
	Standardisation and Governance
	Tooling

	Summary of Results by Research Question
	Maintaining Documentation
	Using UML in documentation

	Threats to Validity
	Conclusions
	Future Work
	Appendix 1
	Appendix 2
	References

